Читаем Популярная аэрономия полностью

К чему же она стремится? К установлению диффузионного распределения заряженных частиц. Согласно такому распределению, концентрация ионов и электронов должна монотонно уменьшаться с высотой, примерно вдвое медленнее, чем концентрация нейтральных частиц в условиях диффузионного равновесия.

Вот вам и конфликт! Фотохимия стремится установить распределение, при котором концентрация, скажем, электронов непрерывно растет с увеличением высоты. У диффузии прямо противоположная цель - привести заряженные частицы к распределению, при котором их концентрация будет с высотой уменьшаться. Происходит борьба двух процессов - фотохимии и диффузии - за право контролировать поведение ионов и электронов. Кто побеждает в этой борьбе, зависит от соотношения сил (скорости процессов), а последнее меняется с высотой. С ростом высоты скорость фотохимических процессов уменьшается, а эффективность процессов диффузии растет. При движении вверх найдется такая высота, где скорость процессов фотохимических и диффузии окажется сравнимой. Выше заряженные частицы будут подчиняться законам диффузии, а ниже - законам фотохимии. В идеальном случае на этой высоте и будет находиться максимум слоя, образованного "соревнованием" между двумя процессами. Именно так и объясняется в настоящее время существование максимума слоя F2 - основного ионосферного максимума - в распределении электронной концентрации.

Фотохимия

Такова в общих чертах картина образования области F2. Объясняет ли она данные наблюдений за поведением этой области? Следует подчеркнуть, что данных этих много - гораздо больше, чем, скажем, об области Е или тем более D. Ведь слой F2 - главный ионосферный слой - хорошо наблюдается на ионограммах. А значит, об области F2 мы имеем многочисленные регулярные данные со всей мировой сети станций ионосферного зондирования. Кроме того, на высотах области F2 регулярно летают искусственные спутники. Они тоже дают много информации о том, как меняются параметры этой области в пространстве и во времени.

Посмотрим, каковы основные особенности поведения области F2 и как они объясняются современной теорией. Начнем с ночного слоя F2. Из экспериментов известно, что ночью концентрация электронов в этом слое падает приблизительно на порядок, а высота максимума повышается примерно на 100 км.

Изменение высоты слоя происходит по двум причинам. Ночью, когда источник ионизации практически отсутствует, максимум слоя должен располагаться там, где сравнивается влияние фотохимии (в данном случае - рекомбинации) и диффузии. Днем же за счет того, что максимум скорости ионообразования расположен внизу (ниже 200 км), смещается вниз и максимум [е]. Этот эффект объясняет примерно половину наблюдаемого изменения высот ото дня к ночи. Вторая половина вызвана вертикальным дрейфом заряженных частиц под действием нейтрального ветра. Двигаясь горизонтально, под углом к силовым линиям магнитного поля, заряженные частицы приобретают составляющую движения, направленную вертикально. Вверх или вниз - зависит от того, откуда дует ветер. В период равнодействия, когда суточные вариации проявляются наиболее четко, ветер дует к полюсам днем и к экватору ночью. Соответственно вертикальная составляющая дрейфа оказывается направленной ночью вверх, а днем - вниз.

Объясняемое таким образом увеличение высоты максимума слоя F2 имеет прямое отношение к проблеме поддержания (вернее, сохранения) ночного слоя F2. Поскольку, как мы знаем, коэффициент рекомбинации β пропорционален концентрации молекул, а последняя уменьшается с высотой, подъем слоя примерно на 100 км означает перенос его в область медленной рекомбинации. Настолько медленной, что слой не успевает полностью исчезнуть в течение ночи и может сохраняться как остаток дневной ионизации. Это - качественное объяснение существования слоя F2 ночью. Количественные расчеты показывают, что для согласования с многочисленными наблюдениями необходима небольшая дополнительная "подкачка" ионизации ночью.

Ясен уже и механизм этой подкачки. Ее осуществляют потоки плазмы (ионов и электронов) из более высоких областей.

Оказалось, что ионосфера находится в своеобразных отношениях взаимообмена с расположенной выше плазмосферой. Днем, когда на ионосферных высотах интенсивно идет фотоионизация, ионосфера может себе позволить поделиться частью образующейся плазмы и та устремляется вверх, образуя поток ионов и электронов. Ночью, когда фотоионизации нет, рекомбинация (которая активна в ионосфере, но практически отсутствует в плазмосфере) начинает быстро уничтожать заряженные частицы в области F2. И здесь плазмосфера возвращает свой долг, посылая потоки плазмы вниз в ионосферу, чтобы поддержать истощенный рекомбинацией профиль электронной концентрации. Таким образом, потоки частиц из плазмосферы (их величина составляет 107-108см-2×с-1) вместе с системой нейтральных ветров объясняют обе особенности ночной области F2 - сохранение достаточно высоких концентраций электронов и подъем максимума слоя.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука