К чему же она стремится? К установлению диффузионного распределения заряженных частиц. Согласно такому распределению, концентрация ионов и электронов должна монотонно уменьшаться с высотой, примерно вдвое медленнее, чем концентрация нейтральных частиц в условиях диффузионного равновесия.
Вот вам и конфликт! Фотохимия стремится установить распределение, при котором концентрация, скажем, электронов непрерывно растет с увеличением высоты. У диффузии прямо противоположная цель - привести заряженные частицы к распределению, при котором их концентрация будет с высотой уменьшаться. Происходит борьба двух процессов - фотохимии и диффузии - за право контролировать поведение ионов и электронов. Кто побеждает в этой борьбе, зависит от соотношения сил (скорости процессов), а последнее меняется с высотой. С ростом высоты скорость фотохимических процессов уменьшается, а эффективность процессов диффузии растет. При движении вверх найдется такая высота, где скорость процессов фотохимических и диффузии окажется сравнимой. Выше заряженные частицы будут подчиняться законам диффузии, а ниже - законам фотохимии. В идеальном случае на этой высоте и будет находиться максимум слоя, образованного "соревнованием" между двумя процессами. Именно так и объясняется в настоящее время существование максимума слоя F2 - основного ионосферного максимума - в распределении электронной концентрации.
Такова в общих чертах картина образования области F2. Объясняет ли она данные наблюдений за поведением этой области? Следует подчеркнуть, что данных этих много - гораздо больше, чем, скажем, об области Е или тем более D. Ведь слой F2 - главный ионосферный слой - хорошо наблюдается на ионограммах. А значит, об области F2 мы имеем многочисленные регулярные данные со всей мировой сети станций ионосферного зондирования. Кроме того, на высотах области F2 регулярно летают искусственные спутники. Они тоже дают много информации о том, как меняются параметры этой области в пространстве и во времени.
Посмотрим, каковы основные особенности поведения области F2 и как они объясняются современной теорией. Начнем с ночного слоя F2. Из экспериментов известно, что ночью концентрация электронов в этом слое падает приблизительно на порядок, а высота максимума повышается примерно на 100 км.
Изменение высоты слоя происходит по двум причинам. Ночью, когда источник ионизации практически отсутствует, максимум слоя должен располагаться там, где сравнивается влияние фотохимии (в данном случае - рекомбинации) и диффузии. Днем же за счет того, что максимум скорости ионообразования расположен внизу (ниже 200 км), смещается вниз и максимум [е]. Этот эффект объясняет примерно половину наблюдаемого изменения высот ото дня к ночи. Вторая половина вызвана вертикальным дрейфом заряженных частиц под действием нейтрального ветра. Двигаясь горизонтально, под углом к силовым линиям магнитного поля, заряженные частицы приобретают составляющую движения, направленную вертикально. Вверх или вниз - зависит от того, откуда дует ветер. В период равнодействия, когда суточные вариации проявляются наиболее четко, ветер дует к полюсам днем и к экватору ночью. Соответственно вертикальная составляющая дрейфа оказывается направленной ночью вверх, а днем - вниз.
Объясняемое таким образом увеличение высоты максимума слоя F2 имеет прямое отношение к проблеме поддержания (вернее, сохранения) ночного слоя F2. Поскольку, как мы знаем, коэффициент рекомбинации β пропорционален концентрации молекул, а последняя уменьшается с высотой, подъем слоя примерно на 100 км означает перенос его в область медленной рекомбинации. Настолько медленной, что слой не успевает полностью исчезнуть в течение ночи и может сохраняться как остаток дневной ионизации. Это - качественное объяснение существования слоя F2 ночью. Количественные расчеты показывают, что для согласования с многочисленными наблюдениями необходима небольшая дополнительная "подкачка" ионизации ночью.
Ясен уже и механизм этой подкачки. Ее осуществляют потоки плазмы (ионов и электронов) из более высоких областей.
Оказалось, что ионосфера находится в своеобразных отношениях взаимообмена с расположенной выше плазмосферой. Днем, когда на ионосферных высотах интенсивно идет фотоионизация, ионосфера может себе позволить поделиться частью образующейся плазмы и та устремляется вверх, образуя поток ионов и электронов. Ночью, когда фотоионизации нет, рекомбинация (которая активна в ионосфере, но практически отсутствует в плазмосфере) начинает быстро уничтожать заряженные частицы в области F2. И здесь плазмосфера возвращает свой долг, посылая потоки плазмы вниз в ионосферу, чтобы поддержать истощенный рекомбинацией профиль электронной концентрации. Таким образом, потоки частиц из плазмосферы (их величина составляет 107-108см-2×с-1) вместе с системой нейтральных ветров объясняют обе особенности ночной области F2 - сохранение достаточно высоких концентраций электронов и подъем максимума слоя.