Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Однако, такой аналогии с классикой не может быть из нескольких соображений. Во-первых, качественное объяснение классической дифракции очевидно из того факта, что классическая электромагнитная волна состоит из многих фотонов. Действительно, предположим, для простоты, что эти фотоны – (почти) точечные. Тогда с теми фотонами, которые не попадают на объект, вообще ничего не происходит, а те фотоны, которые попадают на объект – поглощаются этим объектом. Но в нашей проблеме мы имеем дело только с одним фотоном, волновая функция которого не (почти) точечная, а имеет громадные размеры.

Во-вторых, волновая функция элементарной частицы не может интерпретироваться как классическая волна. Термин "волновая функция" возник при создании квантовой теории для объяснения квантовых явлений на классическом языке, но такого объяснения не существует. Например, рассмотрим электрон, электрический заряд которого равен e. Тогда величина e|ψ(r)|2 не может считаться плотностью заряда электрона в точке r (по крайней мере в классическом смысле) потому, что заряд электрона неделим. А если dV – элемент объема в точке r, то |ψ(r)|2 показывает не какая часть электрона находится в этом элементе объема, а только с какой вероятностью электрон как целое может быть обнаружен в этом элементе объема. Я думаю, что, например, термин "вектор состояния" более подходящий, но так сложилось исторически, что используется термин "волновая функция", хотя волна – это классическое состояние, в котором есть много частиц.

Один из физиков, отстаивающих аналогию с классической дифракцией, привел такой аргумент. В момент когда фотон только подлетел к объекту, волновую функцию фотона можно представить в виде ψ=ψ’+ψ” где ψ’– часть волновой функции внутри объекта, а ψ” – ее часть вне объекта. Пусть Ψ – волновая функция объекта. Тогда начальная волновая функция системы объект+фотон равна Ψψ=Ψψ’+Ψψ”. Результат взаимодействия фотона с объектом описывается действием S-матрицы на волновую функцию начального состояния: SΨψ=SΨψ’+SΨψ”. Так как часть ψ” волновой функции не взаимодействует с объектом, то SΨψ”=Ψψ”. С другой стороны, часть ψ’ волновой функции фотона будет обязательно поглощена объектом, и, в результате этого, объект перейдет в некоторое возбужденное состояние Ψ1. Итак, после прохождения волновой функции фотона через объект, волновая функция системы объект+фотон будет Ψ1+Ψψ”. Поэтому, если сработает вероятность, что фотон не поглотится объектом, то волновая функция фотона после прохождения объекта будет ψ”, и не может быть ситуации когда фотон будет зарегистрирован в геометрической тени объекта.

Эти аргументы интересные, но, как будет отмечено ниже, я думаю, что они неправильные. Я предложил этому физику написать совместную статью, в которой он будет отстаивать эти аргументы, а я буду приводить контраргументы, но он отказался и просил не называть его имя. Тогда я попросил его разрешения привести эти аргументы в своей статье с указанием, что аргументы предложены им. Он дал согласие, но просил не упоминать его имя.

Я думаю, что эти аргументы не могут быть правильными из следующих соображений. Во-первых, так как в квантовой теории координаты обязательно имеют какие-то неопределенности, то разложение ψ=ψ’+ψ” не может быть однозначно определено. Но допустим, что оно может быть определено в каком-то приближении. Тогда результат Ψ1+Ψψ” показывает, что фотон всегда провзаимодействует с объектом т.к. нет ситуации когда волновая функция фотона после прохождения объекта осталась бы такой же как и до прохождения объекта. Но только часть ψ’ волновой функции фотона взаимодействует с объектом, а часть ψ” не взаимодействует вовсе.

Пусть ρ’=|| ψ’||2 – норма состояния ψ’, а ρ”=|| ψ”||2 – норма состояния ψ”. В ситуации, которую мы рассматриваем, ρ’<<ρ”, а если волновая функция фотона нормирована на единицу, то ρ’+ρ”=1. Критический момент в этой проблеме такой: если ρ’≠0, то это не значит, что ρ’ часть фотона находится внутри объекта. Как отмечено выше, элементарная частица не имеет частей. В отличие от классического случая, ρ’ имеет смысл не такой, что ρ’ часть фотона находится внутри объекта, а только то, что вероятность ρ’ найти фотон как целое внутри объекта ≠0. Поскольку вероятность того, что фотон провзаимодействует с объектом <=ρ’ то эта вероятность очень маленькая, и с вероятностью >=(1-ρ’)= ρ” фотон вообще не провзаимодействует с объектом. Поэтому конечное состояние системы объект+фотон можно записать не как выше, а как Ψ1+c1Ψψ, где |c1|2 – вероятность того, что фотон не провзаимодействует с объектом. Так как эта вероятность очень близка к единице, то скорее всего, после прохождения объекта у фотона будет такая же волновая функция как и до подхода к объекту. Поэтому проблема, что фотон может быть зарегистрирован за объектом, остается.


Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии