Читаем Порядок из хаоса полностью

Проблема устойчивости системы относительно изменений такого типа сводится к следующему. Вводимые в небольшом количестве в систему новые составляющие приводят к возникновению новой сети реакций между ее компонентами. Новая сеть реакций начинает конкурировать со старым способом функционирования системы. Если система структурно устойчива относительно вторжения новых единиц, то новый режим функционирования не устанавливается, а сами новые единицы («инноваторы») погибают. Но если структурные флуктуации успешно «приживаются» (например, если новые единицы размножаются достаточно быстро и успевают «захватить» систему до того, как погибнут), то вся система перестраивается на новый режим функционирования: ее активность подчиняется новому «синтаксису»[168].

Простейшим примером такого рода может служить популяция макромолекул, образующихся в результате-полимеризации внутри системы, в которую поступают мономеры А и В. Предположим, что процесс полимеризации автокаталитический, т. е. синтезированный полимер используется в качестве образца для образования цепи с той же последовательностью структурных единиц. Такого рода синтез протекает гораздо быстрее, чем синтез в отсутствие образца для копирования. Каждый тип полимеров, отличающийся от других последовательностью расположения в цепи молекул А и В, может быть описан набором параметров, задающих скорость катализируемого синтеза копии, точность процесса копирования и среднее время жизни самой макромолекулы. Можно показать, что при определенных условиях в популяции доминирует полимер какого-то одного типа, например АВАВАВА..., а остальные полимеры могут рассматриваться как «флуктуации» относительно него. Возникающая всякий раз проблема структурной устойчивости обусловлена тем, что в результате «ошибки» при' копировании эталонного образца в системе возникает полимер нового типа, характеризуемый ранее не встречавшейся последовательностью мономеров А и В и новым набором параметров, который начинает размножаться, конкурируя с доминантными видам и за обладание мономерами А и В. Перед нами простейший вариант классической дарвиновской идеи о «выживании наиболее приспособленного».

Аналогичные идеи положены в основу модели предбиотической эволюции, разработанной Эйгеном и его сотрудниками. Подробности теории Эйгена можно найти в многочисленных статьях и книжных публикациях[169], поэтому мы ограничимся лишь изложением самой сути. Эйген и его сотрудники показали, что только система одного типа обладает способностью сопротивляться «ошибкам», постоянно совершаемым автокаталитическими популяциями, — а именно полимерная система, структурно устойчивая относительно появления любого полимера-«мутанта». Такая система состоит из двух множеств полимерных молекул. Молекулы первого множества выполняют функцию «нуклеиновых кислот». Каждая молекула обладает способностью к самовоспроизведению и действует как катализатор при синтезе молекул второго множества, выполняющих функцию

«протеинов». Каждая молекула второго множества катализирует самовоспроизведение молекул первого множества. Такая кросс-каталитическая связь между молекулами двух множеств может превращаться в цикл (каждая «нуклеиновая кислота» воспроизводит себя с помощью «протеина»). Этот цикл обеспечивает устойчивое выживание «нуклеиновых кислот» и «протеинов», защищенных от постоянно возникающих с высоким коэффициентом воспроизводства новых полимеров: ничто не может вмешиваться в самовоспроизводящийся цикл, образуемый «нуклеиновыми кислотами» и «протеинами». Таким образом, эволюция нового типа начинает расти на прочном фундаменте, предвосхищающем появление генетического кода.

Подход, предложенный Эйгеном, несомненно, представляет большой интерес. В среде с ограниченным запасом питательных веществ дарвиновский отбор имеет важное значение для точного самовоспроизведения. Но нам хотелось бы думать, что это не единственный аспект предбиотической эволюции. Не менее важное значение имеют сильно неравновесные условия, связанные с критическими, пороговыми значениями потоков энергии и вещества. По-видимому, разумно предположить, что некоторые из первых стадий эволюции к жизни были связаны с возникновением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия. На этой стадии жизнь, или «преджизнь», была редким событием и дарвиновский отбор не играл такой существенной роли, как на более поздних стадиях.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука