В нашей книге отношению между микроскопическим и макроскопическим уделяется немало внимания. Одной из наиболее важных проблем в эволюционной теории является возникающая в итоге обратная связь между макроскопическими структурами и микроскопическими событиями: макроскопические структуры, возникая из микроскопических событий, должны были бы в свою очередь приводить к изменениям в микроскопических механизмах. Как ни странно, но в настоящее время наиболее понятные случаи относятся к ситуациям, возникающим в человеческом обществе. Когда мы прокладываем дорогу или строим мост, мы можем предсказать, как это скажется на поведении окрестного населения, а оно в свою очередь определяет изменения в характере и способах связи внутри региона. Такие взаимосвязанные процессы порождают очень сложные ситуации, и это обстоятельство необходимо сознавать, приступая к их моделированию. Именно поэтому мы ограничимся описанием лишь четырех наиболее простых случаев.
5. Логистическая эволюция
Понятие структурной устойчивости находит широкое применение в социальных проблемах. Следует, однако, подчеркнуть, что всякий раз речь идет о сильном упрощении реальной ситуации, описываемой в терминах конкуренции между процессами саморепликации в среде с ограниченными пищевыми ресурсами.
В экологии классическое уравнение, описывающее такую проблему, называется логистическим уравнением.
Оно описывает, как эволюционирует популяция из N особей с учетом рождаемости, смертности и количества ресурсов, доступных популяции. Логистическое уравнение можно представить в виде dN/dt=rN(K—N)—mN, где r и m — характерные постоянные рождаемости и смертности, К — «несущая способность» окружающей среды. При любом начальном значении N система со временем выходит на стационарное значение N=K—m/r, зависящее от разности между несущей способностью среды и отношением постоянных смертности и рождаемости. При достижении этого стационарного значения наступает насыщение: в каждый момент времени рождается столько индивидов, сколько их погибает.
Рис. 20. Эволюция популяции N
как функция времени t, описываемая логистической кривой. Стационарное состояние N=0 неустойчиво, а стационарное состояние N=K—т/r устойчиво относительно флуктуации величины N.
Кажущаяся простота логистического уравнения до некоторой степени скрывает сложность механизмов, участвующих в процессе. Мы уже упоминали о внешнем шуме. В случае логистического уравнения он имеет особенно простой смысл. Ясно, что при учете одних лишь климатических флуктуаций коэффициенты К, т
и r нельзя считать постоянными: как хорошо известно, такие флуктуации могут разрушить экологическое равновесие и даже обречь популяцию на полное вымирание. Разумеется, в системе начинаются новые процессы, такие, как создание запасов пищи и образование новых колоний, которые заходят в своем развитии настолько далеко, что позволяют в какой-то мере избежать воздействия внешних флуктуации.Есть в логистической модели и другие тонкости. Вместо того чтобы записывать логистическое уравнение в непрерывном времени, будем сравнивать состояние популяции через заданные интервалы времени (с интервалом, например, в год). Такое дискретное
логистическое уравнение представимо в виде Nt+1=Nt(l+r[1—Nt/K]), где Nt и Nt+1 — популяции с интервалом в один год (членом, учитывающим смертность, мы пренебрегаем). Р. Мэй[170] обратил внимание на одну замечательную особенность таких уравнений: несмотря на их простоту, они допускают необычайно много решений. При значениях параметра 0?r?2 в дискретном случае так же, как и в непрерывном, наблюдается монотонное приближение к равновесию. При значениях параметра 2<r<2,444 возникает предельный цикл: наблюдается периодический режим с двухлетним периодом. При еще больших значениях параметра r возникают четырех-, восьмилетние и т. д. циклы, пока периодические режимы не переходят (при значениях r больше 2,57) в режим, который может быть назван только хаотическим. Мы имеем здесь дело с переходом к хаосу, описанным в гл. 5, — через серию бифуркаций удвоения периода. Возникает ли такой хаос в природе? Как показывают последние исследования[171], параметры, характеризующие реальные популяции в природе, не позволяют им достигать хаотической области. Почему? Перед нами одна из интереснейших проблем, возникающих при попытке решения эволюционных проблем математическими методами с помощью численного моделирования на современных компьютерах.До сих пор мы рассматривали все со статической точки зрения. Обратимся теперь к механизмам, позволяющим варьировать параметры К, r
и m в ходе биологической или экологической эволюции.