Читаем Порядок из хаоса полностью

При увеличении разности давлений, т.е. по мере приближения числа Рейнольдса к критическому значению, интенсивность гидродинамических флуктуаций, а также время и длина корреляции возрастают. Это — предвестник перестройки движения и изменения макроскопической структуры течения, в результате которой при дальнейшем увеличении числа Рейнольдса и возникает турбулентное движение. Микроскопический (молекулярный) механизм переноса импульса сменяется макроскопическим. Система переходит от «индивидуального» (молекулярного) сопротивления к «организованному» (коллективному) сопротивлению, вследствие чего закон сопротивления изменяется.

Турбулентное движение характеризуется большим числом коллективных степеней свободы. Оно чрезвычайно сложно, но сама по себе сложность движения еще не достаточна для того, чтобы его можно было считать хаотическим (разумеется, если не сводить все к тавтологии, определяя термины «турбулентность» и «хаос» как синонимы). Подробный анализ показывает, что турбулентные движения очень разнообразны и что некоторые из них можно интерпретировать как очень сложные пространственно-временные структуры, возникающие в открытых системах из физического хаоса.

Общее понятие хаоса, как, впрочем, и понятие хаоса в повседневной жизни, лишено определенной количественной меры. По этой причине на таком уровне зачастую трудно определить, какое из рассматриваемых состояний системы является более хаотическим или, напротив, более упорядоченным. Здесь в большей мере приходится полагаться на интуицию, чем на расчет.

Не более определенным во многих случаях является и понятие хаоса в физике, поскольку хаотическим называют и тепловое движение в равновесном состоянии, и существенно неравновесное турбулентное состояние.

Необходима, следовательно, теория, позволяющая количественно оценивать степень упорядоченности различных состояний в открытых системах, т.е. степень упорядоченности структур, возникающих из хаоса. Она, разумеется, должна базироваться на современной статистической теории неравновесных процессов.

«Спектр» систем, для описания которых необходима количественная оценка степени упорядоченности различных состояний, очень широк: от простейших систем до Вселенной. Изначальным может служить физический вакуум, который обладает максимально возможной степенью хаотичности и из которого при наличии управляющих параметров в открытых системах возникают структуры. Вопрос о выборе (определении) управляющих параметров в теории самоорганизации является одним из наиболее существенных и вместе с тем трудных. При наличии нескольких параметров порядка возможны различные пути самоорганизации — различные «сценарии» возникновения порядка из хаоса (гл. 6). При этом возникает возможность оптимального управления.

В качестве одной из характеристик степени упорядоченности можно использовать (при определенных дополнительных условиях) этропию Больцмана—Гиббса. Существенно, что в связи с исследованием сложных — хаотических (или, как часто говорят, стохастических) — движений динамических систем понятие энтропии расширилось. А. Н. Колмогоров ввел для таких систем понятие динамической энтропии. Ее называют также К-энтропия. (Об этом достаточно полно сказано в книге И. Пригожина и И. Стенгерс.) Основополагающими для теории динамического хаоса являются работы Н. С. Крылова. Возможность использования энтропии Больцмана—Гиббса для количественной характеристики степени упорядоченности при процессах самоорганизации в открытых системах не представляется очевидной. Здесь следует выделить два подхода.

В одном случае в изолированной системе происходит эволюция к равновесному состоянию. При этом энтропия системы монотонно возрастает и остается неизменной при достижении равновесного состояния. Этот результат был установлен Больцманом на примере разреженного газа. Он носит название Н-теоремы Больцмана.

В другом случае рассматривается совокупность стационарных состояний, отвечающих различным значениям управляющего параметра. Начало отсчета управляющего параметра может быть, в частности, выбрано таким образом, что его нулевому значению будет отвечать «состояние равновесия».

Аналог Н-теоремы Больцмана для открытых систем — так называемая S-теорема (Климонтович Ю. Л. Уменьшение энтропии в процессе самоорганизации. S-теорема. Письма в Журнал технической физики 1983, т. 8, с. 1412 и другие его работы) сводится к следующему: если за начало отсчета степени хаотичности принять «равновесное состояние», отвечающее нулевым значениям управляющих параметров, то по мере удаления от равновесного состояния вследствие изменения управляющего параметра значения энтропии, отнесенные к заданному значению средней энергии, уменьшаются.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука