Читаем Порядок из хаоса полностью

Но в первую очередь научный метод подразумевает конструктивную деятельность интеллекта. Но в то же время вполне очевидно, что научное творчество не обладает монополией на интеллект. Научная деятельность может оттачивать или совершенствовать те или иные формы деятельности интеллекта, но последний является не менее существенной «основой» всех иных видов жизнедеятельности человека — и в материальном производстве, и в политической деятельности, и в искусстве и т. д. Деятельность интеллекта имманентно включена в процессы научного действия, в структуру научного метода, но специфику последним придает нечто другое.

Для человеческой деятельности особо характерен ее орудийный характер. Вообще можно сказать, что происхождение специфических видов человеческой деятельности стало возможным в процессе выработки особых орудий деятельности. Соответственно этому специфику научной деятельности, ее методов обусловливает главным образом выработка, совершенствование и применение особых орудий, средств познания. Поскольку научное познание имеет, так сказать, и интеллектуальный (сугубо духовный) и материальный аспекты, то можно говорить об интеллектуальных и материальных орудиях познания. Процесс познания не только обеспечивается средствами исследования, но и закрепляется в них своими результатами.

Проблемы научного метода широко обсуждались с самого начала возникновения экспериментального естествознания. Уже в эпоху Возрождения достаточно ясно осознавалось, что научный метод включает и экспериментальное (опытное) и теоретическое начало. Приборы и математика явились первыми специализированными инструментами осуществления диалога исследователей с природой. И в настоящее время считается само собой разумеющимся, что математика и эксперимент входят в структуру научного метода, совершенствуясь с его развитием. Ныне положительное решение вопроса о возможности или необходимости применения математики и приборов в развитии познания не вызывает сомнений. А самый реальный и живой интерес вызывают такие, например, вопросы: какую математику следует применять. в познании новых явлений? Что нового в конструировании приборов и измерительной техники? Какие принципиальные изменения происходят и развитии и применении этих — уже ставших незаменимыми — орудий познания? Ответить на эти вопросы можно лишь в том случае, если мы будем рассматривать научное знание не только, и даже не столько в его готовой, полностью объективизированной, «обезличенной» форме, но также и в процессе его становления, т.е. как знание, выступающее в виде средства и метода получения нового знания. Именно становление, глубокое осмысление начал научного метода привели в дальнейшем научное познание (и прежде всего естествознание) к его важнейшим достижениям — разработке первых научных теорий как относительно целостных концептуальных систем. Таковыми явились классическая механика Ньютона, затем классическая термодинамика, классическая электродинамика, теория относительности, квантовая механика. Эти важнейшие достижения научного познания в свою очередь оказали существенное воздействие и на сам научный метод — его понимание стало неотделимо от научной теории, процессов ее применения и развития. Если стройная теория есть высший результат развития познания тех или иных областей действительности, то истинно научный метод есть теория в действии. Квантовая механика есть не только отражение свойств и закономерностей физических процессов атомного масштаба, но и теоретический метод дальнейшего познания микропроцессов.

Само развитие математических форм и эксперимента начинает ориентироваться на те обобщающие идеи, которые воплощаются в научной теории. Научный поиск становится более целенаправленным, получает внутренне содержательное единство. «Диалогизм» научного метода, как показывает, в частности, книга И. Пригожина и И. Стенгерс, начинает все более определять динамизм концептуальных систем, современного научного мышления.

Процесс «диалогизации» научного познания в наши дни в огромной степени стимулирован вхождением .ЭВМ в научные исследования. ЭВМ являются величайшим и все совершенствующимся орудием, которое создано человеком нашего времени в его стремлении понять окружающий мир. Разработка и применение ЭВМ составляют эпоху в развитии жизнедеятельности человека, расширяя и углубляя его коммуникативные возможности, уровень его контактов с объективной реальностью.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука