Читаем Порядок из хаоса полностью

Любая задача динамики представима в виде системы дифференциальных уравнений. Мгновенное состояние каждого из тел системы описывается как мгновенное состояние материальной точки и определяется заданием его положения, скорости и ускорения, т. е. первыми и вторыми производными от вектора r, задающего положение тела. В каждый момент времени система сил, зависящая от расстояний между точками системы (т. е. от r), однозначно определяет ускорение каждой точки. Ускоренное движение точек приводит к изменению расстояний между ними и, следовательно, системы сил, действующих на них в следующий момент.

Если запись дифференциальных уравнений означает постановку динамической задачи, то их интегрирование соответствует решению этой задачи. Интегрирование сводится к вычислению траекторий r(t), в которых содержится вся информация, существенная для динамики. Она дает полное описание динамической системы.

В этом описании можно выделить два элемента: положения и скорости всех материальных точек в один момент времени (часто называемые начальными условиями) и уравнения движения, связывающие динамические силы с ускорениями. Интегрирование уравнений движения развертывает начальное состояние в последовательность состояний, т. е. порождает семейство траекторий тел, образующих рассматриваемую систему.

Триумфом ньютоновской науки явилось открытие универсальности гравитации: одна и та же сила «всемирного тяготения», или гравитации, определяет и движение планет и комет в небе, и движение тел, падающих на поверхность Земли. Из теории Ньютона следует, что между любыми двумя материальными телами действует одна и та же сила взаимного притяжения. Таким образом, ньютоновская динамика обладает двоякой универсальностью. Математическая формулировка закона всемирного тяготения, описывающая, каким образом стремятся сблизиться любые две массы, не связана ни с каким масштабом явлений. Закон всемирного тяготения одинаково применим к движению атомов, планет или звезд в галактиках.

Любое тело, каковы бы ни были его размеры, обладает массой и действует как источник ньютоновских сил тяготения.

Поскольку между любыми двумя массами возникают силы взаимного притяжения (на каждое из двух тел с массами т и т', находящихся на расстоянии r друг от друга, со стороны другого тела действует сила притяжения, равна kmm'/r2, где k — ньютоновская гравитационная постоянная; k=6,67 Нxм2/кг2), то единственной истинно динамической системой является только Вселенная в целом. Любую локальную динамическую систему, например нашу планетную систему, можно определить лишь приближенно, пренебрегая силами, малыми в сравнении с теми, действие которых мы рассматриваем.

Следует подчеркнуть, что для произвольно выбранной динамической системы законы движения всегда представимы в виде F=та. Помимо гравитации, могут быть и действительно были открыты другие силы, например силы взаимного притяжения и отталкивания электрических зарядов. Каждое такое открытие изменяет эмпирическое содержание законов движения, но не затрагивает их формы. В мире динамики изменение отождествляется с ускорением (как положительным — в случае разгона, так и с отрицательным — в случае торможения). Интегрирование законов движения позволяет найти траектории, по которым движутся частицы. Следовательно, законы изменения, или влияния времени на природу, должны быть как-то связаны с характеристиками траекторий.

К числу основных характеристик траекторий относятся регулярность, детерминированность и обратимость. Мы уже знаем, что для вычисления любой траектории, помимо известных законов движения, необходимо эмпирически задать одно мгновенное состояние системы. Общие законы движения позволяют вывести из заданного начального состояния бесконечную серию состояний, проходимых системой со временем, подобно тому, как логика позволяет выводить заключения из исходных посылок. Замечательная особенность траекторий динамической системы состоит в том, что, коль скоро силы известны, одного-единственного состояния оказывается достаточно для полного описания системы — не только ее будущего, но и прошлого. Следовательно, в любой момент времени все задано. В динамике все состояния эквивалентны: каждое из них позволяет вычислить остальные состояния вместе с траекторией, проходящей через все состояния как в прошлом, так и в будущем.

«Все задано». Этот вывод классической динамики, как неоднократно подчеркивал Бергсон, характеризует описываемую динамикой реальность. Все задано, но вместе с тем и все возможно. Существо, способное управлять динамической системой, может вычислить нужное ему начальное состояние так, чтобы система, будучи предоставленной самой себе, «спонтанно» перешла в любое заранее выбранное состояние в заданный момент времени. Общность законов динамики уравновешивается произволом в выборе начальных условий.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука