Читаем Порядок из хаоса полностью

Изменение, рассматриваемое в динамике, интересно сравнить с концепцией изменения, принятой у атомистов, сторонников корпускулярной теории, пользовавшейся необычайной популярностью во времена, когда Ньютон размышлял над своими законами. По-видимому, не только Декарт, Гассенди и Д'Аламбер, но и сам Ньютон усматривали в соударениях твердых частиц — корпускул, первопричину и скорее всего единственный источник изменения движения[69]. Тем не менее динамическое описание в корне отлично от корпускулярного. Действительно, непрерывный характер ускорения, описываемого уравнениями динамики, разительно контрастирует с дискретными мгновенными соударениями твердых корпускул. Еще Ньютон заметил, что в отличие от динамики каждое столкновение твердых корпускул сопровождается необратимой убылью движения. Обратимо, т. е. согласуется с законами динамики, только упругое столкновение, при котором сохраняется импульс, или количество движения. Но приложимо ли столь сложное понятие, как упругость, к атомам, которые, по предположению, являются мельчайшими структурными элементами природы?

С другой стороны, на менее техническом уровне законы динамики противоречат случайности, обычно приписываемой атомным столкновениям. Еще древние философы отмечали, что любой происходящий в природе процесс допускает множество различных интерпретаций как результат движения и столкновения атомов. Однако основная проблема для атомистов заключалась не в этом: их главной целью было дать описание мира без божества и законов, в котором человек свободен и может не ожидать ни кары, ни воздаяния ни от божественного, ни от естественного порядка. Но классическая наука была наукой инженеров и астрономов, наукой активного действия и предсказания. Чисто умозрительные построения, основанные на гипотетических атомах, не могли удовлетворять потребности классической науки, в то время как законы Ньютона давали надежную основу для предсказания и активного действия. С принятием законов Ньютона природа становится законопослушной, покорной и предсказуемой вместо того, чтобы быть хаотичной, нерегулярной и непредсказуемой. Но какова же связь между смертным, нестабильным миром, в котором атомы непрестанно сталкиваются и разлетаются вновь, и незыблемым миром динамики, в котором властвуют законы Ньютона, — единственная математическая формула, соответствующая вечной истине, открывающейся навстречу тавтологическому будущему? В XX в. мы вновь становимся свидетелями столкновения между закономерностью и случайными явлениями, конфликта, мучившего, как показал Койре, еще Декарта[70]. С тех пор как в конце XIX в. — в связи с появлением кинетической теории газов — атомный хаос вновь вошел в физику, проблема взаимосвязи динамического закона и статистического описания стала одной из центральных в физике. Решение ее — один из ключевых элементов происходящего ныне «обновления» динамики (см. часть III настоящей книги).

В XVIII в. противоречие между динамическим законом и статистическим описанием воспринималось как зашедшее в тупик развитие науки, и это отчасти объясняет тот скептицизм, с которым некоторые физики XVIII в. относились к значимости предложенного Ньютоном динамического описания. Мы уже упоминали о том, что столкновения могут сопровождаться необратимой убылью движения. По мнению некоторых физиков XVIII в., в подобных неидеальных случаях «энергия» не сохраняется, а происходит ее необратимая диссипация (см. разд. 3, гл. 4). Это объясняет, почему атомис-ты — сторонники корпускулярной теории — не могли не видеть в динамике Ньютона идеализацию, обладающую ограниченной ценностью. Физики и математики континентальной Европы, в том числе Д'Аламбер, Клеро и Лагранж, долгое время сопротивлялись обольстительным чарам ньютонианства.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука