Читаем Порядок из хаоса полностью

Последовавший затем короткий, но оставивший неизгладимый след период был периодом торжества науки. Она удостоилась признания и почестей со стороны могущественных держав, была провозглашена обладательницей непротиворечивой концепции мироздания. Почитаемый Лапласом Ньютон стал всеобщим символом золотого века. То был счастливый момент, когда ученые были и в собственных глазах, и в глазах других людей пионерами прогресса, чью деятельность поддерживало и поощряло все общество.

Уместно спросить: каково значение ньютоновского синтеза в наши дни, после создания теории поля, теории относительности и квантовой механики? Это — сложная проблема, и мы к ней еще вернемся. Теперь нам хорошо известно, что природа отнюдь не «комфортабельна и самосогласованна», как полагали прежде. На микроскопическом уровне законы классической механики уступили место законам квантовой механики. Аналогичным образом на уровне Вселенной на смену ньютоновской физике пришла релятивистская физика. Тем не менее классическая физика и поныне остается своего рода естественной точкой отсчета. Кроме того, в том смысле, в каком мы определили ее, т. е. как описание детерминированных, обратимых, статичных траекторий, ньютоновская динамика и поныне образует центральное ядро всей физики.

Разумеется, со времен Ньютона, формулировка классической динамики претерпела значительные изменения. Эти изменения явились результатом работы ряда величайших математиков и физиков, таких, как Гамильтон и Пуанкаре. В истории классической динамики кратко можно выделить два периода. Первым был период прояснения и обобщения. Во второй период даже в тех областях, где (в отличие от квантовой механики и теории относительности) классическая механика в целом по-прежнему остается верной, ее основные понятия подверглись критическому пересмотру. В тот момент, когда пишется эта книга — в конце XX в., — мы все еще находимся во втором периоде. Обратимся теперь к общему языку динамики, созданному трудами ученых XIX в. (в гл. 9 мы кратко опишем возрождение классической динамики в наше время).

3. Язык динамики


Ныне мы располагаем всем необходимым для того, чтобы сформулировать классическую динамику компактно и изящно. Как мы увидим из дальнейшего, все свойства динамической системы могут быть выражены с помощью одной функции, известной под названием функций Гамильтона, или гамильтониана. Языку динамики свойственны непротиворечивость и полнота. Он позволяет однозначно сформулировать любую правильно поставленную («законную») задачу динамики. Неудивительно, что начиная с XVIII в. структура динамики вызывала и продолжает вызывать восхищение и поныне поражает воображение.

В динамике одну и ту же систему можно рассматривать с различных точек зрения. В классической динамике все эти точки зрения эквивалентны: от любой из них к любой другой можно перейти с помощью преобразования (замены переменных). Можно говорить о различных эквивалентных представлениях, в которых выполняются законы динамики. Различные эквивалентные представления образуют общий язык динамики. Этот язык позволяет выразить в явном виде статический характер, придаваемый классической динамикой описываемым ею системам: для многих классических систем время не более чем акциденция, поскольку их описание может быть сведено к описанию невзаимодействующих механических систем. Для того чтобы мы могли ввести эти понятия наиболее просто, начнем с закона сохранения энергии.

В идеальном мире динамики, не знающем ни трения, ни соударений, коэффициент полезного действия машин равен единице; динамическая система, которой является машина, лишь передает «целиком, без остатка» все сообщаемое ей движение. Машина, получающая некоторый запас потенциальной энергии (например, в виде сжатой пружины, поднятого груза или сжатого воздуха), может производить движение, соответствующее «равному» количеству кинетической энергии, а именно тому, которое потребовалось бы для восполнения запаса потенциальной энергии, израсходованного на производство движения. В простейшем случае единственная сила, которую приходится рассматривать, — это сила тяжести (с этим случаем мы встречаемся при анализе работы всех простых машин: блоков, рычагов, воротов и т. д.). Нетрудно вывести (для этого случая) общее отношение эквивалентности причины и действия. Высота h, которую проходит при падении тело, полностью определяет скорость, приобретаемую телом к концу падения. Если тело с массой m падает вертикально, соскальзывает по наклонной плоскости или съезжает с горки, то приобретаемая телом скорость v и кинетическая энергия mv2/2 зависят только от величины h, на которую понизился уровень тела (v=O/2gh), и позволяют телу вернуться на первоначальную высоту. Работа против силы тяжести, совершаемая при движении вверх, восполняет потенциальную энергию на величину mgh, т. е. на столько, сколько потеряла система при падении. Другим примером может служить маятник, у которого кинетическая и потенциальная энергия непрерывно преобразуются одна в другую.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука