Мы уже упоминали о том, что существует множество различных
Рис. 1. Два представления одной и той же динамической системы: а) как множество взаимодействующих точек (волнистые линии условно изображают взаимодействие между точками); б) как множество точек, каждая из которых ведет себя независимо от остальных (если потенциальная энергия исключена, то относительные движения точек не зависят от их взаимного расположения).
Мы уже упоминали о том, что в динамике «все задано». В случае гамильтоновой динамики это означает, что с самого первого мгновения значения различных инвариантов движения заданы. Ничего нового не может ни «случиться», ни «произойти». Так в гамильтоновой динамике мы сталкиваемся с одним из тех драматических моментов в истории науки, когда описание природы сводится почти к статической картине. Действительно, при разумной замене переменных мы можем добиться, чтобы все взаимодействия исчезли. Долгое время считалось, что интегрируемые системы, сводимые к свободным частицам, являются прототипами всех динамических систем. Поколения физиков и математиков не покладая рук трудились над тем, чтобы найти для каждого типа динамических систем «правильные» переменные, которые позволили бы исключить взаимодействия. Одним из наиболее изученных примеров может служить задача трех тел, которую с полным основанием можно назвать наиболее важной задачей в истории динамики. Одним из частных случаев задачи трех тел является движение Луны, испытывающей притяжение как со стороны Земли, так и со стороны Солнца. Были предприняты бесчисленные попытки свести эту систему к интегрируемой, но в конце XIX в. Брунс и Пуанкаре доказали, что это невозможно. Их результат был полной неожиданностью для современников и, по существу, возвестил о наступлении бесповоротного конца всех простых экстраполяций динамики на основе интегрируемых систем. Открытие Брунса и Пуанкаре показало, что динамические системы не изоморфны. Простые интегрируемые системы допускают разложение на невзаимодействующие подсистемы, но в общем случае исключить взаимодействия невозможно. Хотя в то время значение открытия Брунса и Пуанкаре не было оценено по достоинству, оно означало отказ от незыблемого убеждения в однородности динамического мира, в его сводимости к интегрируемым системам. Природа как эволюционирующая система с многообразно взаимодействующими подсистемами упорно сопротивлялась попыткам сведения ее к универсальной схеме, не содержащей к тому же времени.