Читаем Порядок из хаоса полностью

«Согласно этому способу выражения, в природе невозможны те процессы, при которых природа дает меньшее предпочтение конечному состоянию, чем начальному. Предельный случай представляет обратимые процессы; в них природа испытывает одинаковое предпочтение как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях»[137].

Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия определяют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоянию одного и того же типа. К моменту достижения равновесия система забывает свои начальные условия, т. е. способ, которым она была приготовлена.

Удельная теплоемкость или сжимаемость системы, находящейся в состоянии термодинамического равновесия, являются свойствами, не зависящими от того, как была построена система. Это счастливое обстоятельство значительно упрощает исследование физических состояний вещества. Действительно, сложные системы состоят из огромного числа частиц[138]. С точки зрения динамики воспроизвести любое состояние такой системы невозможно из-за бесконечного разнообразия состояний, в которых она может находиться.

Мы сталкиваемся, таким образом, с двумя принципиально различными описаниями: динамикой, применимой к миру движения, и термодинамикой, наукой о сложных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии. Столь резкая противоположность двух описаний немедленно порождает вопрос о том, какая взаимосвязь существует между ними. Эта проблема дискутируется в науке с тех пор, как были сформулированы начала термодинамики.

6. Принцип порядка Больцмана


Второе начало термодинамики содержит два принципиально важных элемента: 1) «негативный», выражающий запрет на некоторые процессы, т. е. их невозможность (тепло может распространяться от горячего источника к холодному, но не от холодильника к нагревателю); 2) «положительный», конструктивный. Второй элемент является следствием первого: запрет на некоторые процессы позволяет нам ввести функцию (энтропию), монотонно возрастающую для изолированных систем. Энтропия ведет себя как аттрактор для изолированных систем.

Каким образом положения термодинамики можно было бы совместить с динамикой? В конце XIX в. большинство ученых, по всей видимости, склонны были думать, что термодинамика несовместима с динамикой. Принципы термодинамики были новыми законами, закладывающими фундамент новой науки, не сводимой к традиционной физике. Качественное многообразие энергии и присущую ей тенденцию к диссипации приходилось принимать как новые аксиомы. Таким был аргумент, выдвигаемый «энергетистами» в противовес «атомистам», упорно не желавшим отказаться от выполнения программы, в которой они усматривали высшую миссию физики — сведение сложности явлений природы к простоте поведения элементарных структурных единиц, выражаемого законами движения.

Проблемы перехода от микроскопического уровня к макроскопическому оказались необычайно плодотворными для физики в целом. Первым вызов принял Больцман. Тонкая физическая интуиция подсказывала ему, что необходимо выработать какие-то новые понятия, которые позволили бы обобщить физику траекторий, распространив ее на системы, описываемые термодинамикой. Следуя по стопам Максвелла, Больцман принялся искать концептуальные новации в теории вероятности.

В самой идее о том, что вероятность могла бы играть определенную роль в описании сложных явлений, ничего удивительного не было: у Максвелла она, по-видимому, зародилась под влиянием трудов Кетле, который первым ввел в социологию понятие «среднего» человека. Новацией было введение вероятности в физику не как средства аппроксимации, а как объясняющего принципа, использование ее для демонстрации нового типа поведения систем, состоящих из огромного числа частиц: наличие большой популяции позволяло применять правила теории вероятностей.

Рассмотрим один простой пример применения понятия вероятности в физике. Предположим, что ансамбль из N частиц находится в ящике, разделенном на два равных отделения. Требуется найти вероятность различных распределений частиц между отделениями, т. е. найти вероятность обнаружить N1 частиц в первом отделении (и N2=N—N1 частиц во втором).

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука