Читаем Порядок из хаоса полностью

На этом история не заканчивается, и всю третью часть нашей книги мы посвятим более подробному обсуждению затронутого круга проблем, а пока ограничимся несколькими замечаниями. В классической (и, как мы увидим в дальнейшем, квантовой) механике все определяется в терминах начальных состояний и законов движения. Каким же образом в описание природы входит вероятность? Обычно, отвечая на этот вопрос, ссылаются на то, что мы не знаем с абсолютной точностью динамическое состояние системы. Это — субъективистская интерпретация энтропии. Такая интерпретация была бы приемлема, если бы необратимые процессы мы рассматривали лишь как досадные помехи, соответствующие трению, или, более общо, как потери при функционировании тепловых машин. Но ныне ситуация изменилась. Как мы увидим, необратимым процессам отводится важнейшая конструктивная роль: так, без них была бы невозможна жизнь. Все это делает субъективистскую интерпретацию весьма спорной. В какой мере допустимо считать, что мы сами являемся результатом неполноты собственного знания, следствием того, что нашему наблюдению доступны лишь макроскопические состояния?

И в термодинамике, и в ее вероятностной интерпретации возникает асимметрия во времени: энтропия возрастает в направлении будущего, но не прошлого. Если мы рассматриваем динамические уравнения, инвариантные относительно обращения времени, то такая асимметрия представляется невозможной. Как мы увидим в дальнейшем, второе начало термодинамики представляет собой принцип отбора, совместимый с динамикой, но не выводимый из нее. Второе начало ограничивает возможные начальные условия, доступные для динамической системы. Следовательно, второе начало термодинамики знаменует радикальный отход от механистического мира классической или квантовой механики. Но вернемся к работам Больцмана.

До сих пор мы рассматривали изолированные системы, в которых число частиц и полная энергия заданы граничными условиями. Но объяснение Больцмана допускает обобщение на открытые системы, взаимодействующие с окружающей средой. В замкнутой системе, определяемой граничными условиями так, что ее температура Т поддерживается постоянной за счет теплообмена с окружающей средой, равновесие соответствует не максимуму энтропии, а минимуму аналогичной функции, получившей название свободной энергии: F=E—TS, где Е — энергия системы, Т — ее температура по так называемой шкале Кельвина (точка замерзания воды соответствует 273 °К, а точка кипения 373 °К).

Соотношение F=E—TS означает, что равновесие есть результат конкуренции между энергией и энтропией, а температура выступает в роли множителя, определяющего относительный вес этих двух факторов. При низких температурах перевес на стороне энергии, и мы наблюдаем образование таких упорядоченных (с малой энтропией) и низкоэнергетических структур, как кристаллы. Каждая молекула внутри таких структур взаимодействует со своими соседями, и их кинетическая энергия мала по сравнению с потенциальной энергией, обусловленной взаимодействиями между соседними молекулами. Каждая молекула как бы скована взаимодействием со своими соседями. При высоких температурах доминирует энтропия и в системе устанавливается молекулярный хаос. Важность относительного движения возрастает, и регулярность в строении кристалла нарушается: по мере увеличения температуры вещество переходит сначала в жидкое, а затем в газообразное состояние.

Энтропия S изолированной системы и свободная энергия системы при заданной температуре являются примерами так называемых термодинамических потенциалов. Экстремумы (т. е. максимумы и минимумы) термодинамических потенциалов, в том числе S и F, задают состояния-аттракторы, к которым самопроизвольно стремится система, если ее граничные условия соответствуют определениям потенциалов.

Принцип порядка Больцмана может быть использован и при исследовании сосуществования структур (например, жидкой и твердой фаз) или равновесия между кристаллизовавшимся продуктом и тем же продуктом в растворе. Не следует, однако, забывать о том, что равновесные структуры определены на молекулярном уровне. Взаимодействие между молекулами на расстоянии порядка 10-8 см, т. е. порядка диаметра атомов в молекулах, делает устойчивой структуру кристаллов и наделяет их макроскопическими свойствами. С другой стороны, размеры кристалла не являются внутренним свойством структуры. Они зависят от того, какое количество вещества находится в кристаллической фазе при равновесии.

7. Карно и Дарвин


Равновесная термодинамика позволяет удовлетворительно объяснить огромное число физико-химических явлений. Тем не менее уместно спросить, охватывает ли понятие равновесной структуры все те различные структуры, с которыми мы сталкиваемся в природе. Ясно, что ответ на подобный вопрос может быть только отрицательным.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука