Читаем Порядок из хаоса полностью

Если мы применим тот же метод, то для реакции A+2X->3X получим кинетическое уравнение dX/dt=КАХ2, т. е. скорость изменения концентрации вещества Х окажется пропорциональной квадрату его концентрации.

Другой весьма важный класс каталитических реакций в биологии — так называемый кросс-катализ — представлен для системы 2X+Y->3X, B+X->Y+D на рис. 3.

Рис. 3. На этом графике представлены пути реакций для «брюсселятора» (более подробно «брюсселятор» описан в тексте).


В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), поскольку из Y получается X, а из Х одновременно получается Y. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соответствующих петель обратной связи.

Характерные математические особенности нелинейных дифференциальных уравнений, описывающих химические реакции с каталитическими стадиями, как мы убедимся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биологами установлено, что петли обратной связи играют весьма существенную роль в метаболических функциях. Например, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информации, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.

Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процессов, таких, как перенос тепла и диффузия вещества. Скорости необратимых процессов называются также потоками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В химических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведенных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверждает, что поток тепла J пропорционален градиенту температуры. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство энтропии P=diS/dt может быть вычислено по потоку и силам.

Рассмотрим определение обобщенной силы в случае химической реакции. Для простоты обратимся снова к реакции A+X->Y+B. Как мы уже знаем, в случае равновесия соотношение концентраций определяется законом действия масс. Теофил де Донде показал, что в качестве «химической силы» можно ввести сродство A, определяющее направление протекания химической реакции так же, как градиент температуры определяет направление теплового потока. В рассматриваемом нами случае сродство пропорционально lnKBY/AX, где К — константа равновесия. Непосредственно видно, что сродство A обращается в нуль при достижении равновесия, где по закону действия масс AX/BY=K. Если мы станем выводить систему из равновесия, то сродство (по абсолютной величине) возрастет. В этом нетрудно убедиться, если исключить из системы некоторую долю молекул В по мере их образования в ходе реакции. Можно сказать, что сродство служит мерой расстояния между фактическим состоянием системы и ее равновесным состоянием. Кроме того, как мы упоминали, знак сродства определяет направление химической реакции. Если сродство A положительно, то молекул В и Y «слишком много» и суммарная реакция идет в направлении B+Y->A+X. И, наоборот, если сродство A отрицательно, то молекул В и Y «слишком мало» и суммарная реакция идет в обратном направлении.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука