Читаем Порядок из хаоса полностью

Сродство в том смысле, в каком мы его определили, является уточненным вариантом старинного сродства, о которой писали еще алхимики, стремившиеся разобраться в способности химических веществ вступать в одни и не вступать в другие реакции, т. е. в «симпатиях» и «антипатиях» молекул. Идея о том, что химическая активность не сводима к механическим траекториям, к невозмутимому господству динамических законов, подчеркивалась с самого начала. Мы уже приводили обширную выдержку из Дидро. Позднее Ницше по другому поводу заметил, что смешно говорить о «химических законах», как будто химические вещества подчиняются законам, аналогичным законам морали. В химии, утверждал Ницше, не существует ограничений и каждое вещество вольно поступать как ему «вздумается». Речь идет не об «уважении», питаемом одним веществом к другому, а о силовой борьбе, о непрестанном подчинении слабого сильному[144]. Химическое равновесие с обращающимся в нуль сродством соответствует разрешению этого конфликта. С этой точки зрения специфичность термодинамического сродства перефразирует на современном языке старую проблему[145] — проблему различия между скованным жесткими нормами безразличным миром динамических законов и миром спонтанной продуктивной активности, которому принадлежат химические реакции.

Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической физике мы можем по крайней мере представлять себе обратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в динамике всегда соответствует идеализации, но по крайней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изучением которых она занимается (химические превращения, характеризуемые скоростями реакций), необратимы. По этой причине химию невозможно свести к лежащей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эквивалентные роли.

Как и следовало ожидать, все необратимые процессы сопровождаются производством энтропии. Каждый из них входит в diS в виде произведения скорости, или потока J и соответствующей силы X. Полное производство энтропии в единицу времени P=diS/dt равно сумме всех таких вкладов, каждый из которых имеет вид произведения JX.

Термодинамику можно разделить на три большие области, изучение которых соответствует трем последовательным этапам в развитии термодинамики. В равновесной области производство энтропии, потоки и силы равны нулю. В слабо неравновесной области, где термодинамические силы «слабы», потоки Jk линейно зависят от сил. Наконец, третья область называется сильно неравновесной, или нелинейной, потому, что в ней потоки являются, вообще говоря, более сложными функциями сил. Охарактеризуем сначала некоторые общие особенности линейной термодинамики, характерные для слабо неравновесных систем.

2. Линейная термодинамика


В 1931 г. Ларс Онсагер открыл первые общие соотношения неравновесной термодинамики в линейной, слабо неравновесной области. Это были знаменитые «соотношения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воздействует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла). Соотношения взаимности неоднократно подвергались экспериментальной проверке. Например, всякий раз, когда градиент температуры индуцирует диффузию вещества, мы обнаруживаем, что градиент концентрации вызывает поток тепла через систему.

Следует особо подчеркнуть, что соотношения Онсагера носят общий характер. Несущественно, например, происходят ли необратимые процессы в газообразной, жидкой или твердой среде. Соотношения взаимности выполняются независимо от допущений относительно агрегатного состояния вещества.

Соотношения взаимности Онсагера были первым значительным результатом в термодинамике необратимых процессов. Они показали, что предмет этой новой науки не некая плохо определенная «ничейная» земля, а заслуживает внимания ничуть не меньше, чем предмет традиционной равновесной термодинамики, не уступая последнему в плодотворности. Если равновесная термодинамика была достижением XIX в., то неравновесная термодинамика возникла и развивалась в XX в. Вывод соотношений взаимности Онсагера ознаменовал сдвиг интересов от равновесных явлений к неравновесным.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука