Читаем Порядок из хаоса полностью

Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порождать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энергетических процессов в клетке, зависящих от концентрации АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.

Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции протекают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом[150], а полученные результаты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химическим часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.

С точки зрения термодинамики живая система отличается необычайной сложностью. Одни реакции протекают в слабо неравновесных условиях, другие — в сильно неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энергии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобождающей часть накопленной в ней энергии.

Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс[151] интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.

Образование колоний у коллективных амеб — один из наиболее ярких примеров явления самоорганизации в биологической системе, в которой важную роль играют химические часы (см. рис. А).

?ис. A.

Выйдя из спор, амебы растут и размножаются как одноклеточные организмы. Так продолжается до тех пор, пока пищи (главным образом, бактерий) достаточно. Как только пищевой ресурс истощается, амебы перестают репродуцироваться и вступают в промежуточную фазу, которая длится около восьми часов. К концу этого периода амебы начинают сползаться к отдельным клеткам, выполняющим функции центров агрегации. Образование многоклеточных колоний, ведущих себя как единый организм, происходит в ответ на хемотаксические сигналы, испускаемые центрами. Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несущий на конце мириады спор.

У Dictyostelium. discoideum сползание одноклеточных амеб в многоклеточную колонию происходит не монотонно, а периодически. Как показывает киносъемка процесса образования колоний, существуют концентрические волны амеб, сходящиеся к центру с периодом в несколько минут. Природа хемотаксического фактора известна. Это циклическая АМФ (цАМФ) — вещество, встречающееся во многих биохимических процессах, например в процессах гормональной регуляции. Центры скопления амеб периодически испускают сигналы — порции цАМФ, на которые другие клетки реагируют, перемещаясь к центру и в свою очередь испуская аналогичные сигналы к периферии территории, занимаемой колонией. Существование такого механизма передачи хемотаксических сигналов позволяет каждому центру контролировать колонию, состоящую примерно из 105 амеб.

Как показывает анализ модели образования многоклеточной колонии, существуют два типа бифуркаций: во-первых, агрегация сама по себе представляет нарушение пространственной симметрии; во-вторых, происходит нарушение временной симметрии.

Первоначально амебы распределены равномерно. Когда некоторые из них начинают испускать хемотаксические сигналы, возникают локальные флуктуации в концентрации цАМФ. При достижении критического значения некоторого параметра системы (коэффициента диффузии цАМФ, подвижности амеб и т.д.) флуктуации усиливаются: однородное распределение становится неустойчивым и амебы эволюционируют к неоднородному распределению в пространстве. Это новое распределение соответствует скоплению амеб вокруг центров.

Для того чтобы понять происхождение периодичности в сползании D. discoideum к центрам, необходимо изучить механизм синтеза хемотаксического сигнала. На основе экспериментальных данных этот механизм можно изобразить в виде следующей схемы (рис. В).

?ис. B.

На поверхности клетки рецепторы (Р) захватывают молекулы цАМФ. Рецептор обращен во внеклеточную среду и функционально связан с ферментом аденилатциклазой (Ц), преобразующим внутриклеточную АТФ в цАМФ (на рис. цАМФ не обозначена). Синтезированная цАМФ транспортируется через мембрану во внеклеточную среду, где расщепляется фосфодиэстеразой — ферментом, выделяемым амебами. Эксперименты показывают, что захват внемолекулярной цАМФ мембранным рецептором активирует аденилатциклазу (положительная обратная связь обозначена знаком +).

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука