Читаем Порядок из хаоса полностью

Анализ модели синтеза цАМФ на основе такой автокаталитической регуляции позволил унифицировать различные типы поведения, наблюдаемые при образовании колонии коллективных амеб[152].

Двумя ключевыми параметрами модели являются концентрации аденилатциклазы (s) и фосфодиэстеразы (k). На рис. С, заимствованном из работы Goldbeter A., Segel L.. Differentiation, 1980, 17, p. 127—135, показано поведение модельной системы в пространстве параметров s и k.

?ис. C.

В зависимости от значений s и k все пространство этих параметров подразделяется на три области. Область А соответствует устойчивому, невозбудимому стационарному состоянию, область В — устойчивому, но возбудимому стационарному состоянию и область С — режиму незатухающих колебаний вокруг неустойчивого стационарного состояния.

Стрелка указывает возможный «путь развития», соответствующий повышению концентрации фосфодиэстеразы (k) и аденилатциклазы (s), наблюдаемому после начала голодания. Переход из области А в области В и С соответствует наблюдаемым изменениям в поведении: клетки сначала неспособны реагировать на сигналы — внеклеточную цАМФ, затем начинают передавать сигналы дальше и, наконец, обретают способность автономно синтезировать цАМФ в периодическом режиме. Центры колоний являются клетками, для которых параметры k и s быстрее достигают точки внутри области С после начала голодания.

Когда запас питательных веществ в той среде, в которой живут и размножаются коллективные амебы, иссякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, насчитывающую несколько десятков тысяч клеток. Образовавшийся «псевдоплазмодий» претерпевает дифференциацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», наполненную спорами, которые отделяются и распространяются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размножаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окружающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресурсы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.

Исследование первой стадии образования колонии показало, что она начинается с волн перемещения отдельных амеб, распространяющихся по их популяции к спонтанно возникающему «центру притяжения». Экспериментальные исследования и анализ теоретических моделей установили, что миграция является откликом клеток на существование в среде градиента концентрации ключевого вещества — циклической АМФ, периодически испускаемого сначала амебой, ставшей центром притяжения, а затем — после срабатывания механизма задержки — и другими амебами. И в этом случае мы видим, какую важную роль играют химические часы. Как уже неоднократно подчеркивалось, они, по существу, являются новым средством связи. В случае коллективных амеб механизм самоорганизации приводит к установлению связи между клетками.

Мы хотели бы подчеркнуть еще один аспект. Образование колоний коллективных амеб — типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», испускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т. е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов — циклической АМФ — и, таким образом, стать «центром притяжения» для остальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.

6. Бифуркации и нарушение симметрии


Рассмотрим теперь более подробно, как возникает самоорганизация и какие процессы начинают происходить, когда ее порог оказывается превзойденным. В равновесном или слабо неравновесном состоянии существует только одно стационарное состояние, зависящее от значений управляющих параметров. Обозначим управляющий параметр через ППП (им может быть, например, концентрация вещества В в «брюсселяторе», описание которого приведено в разд. «За порогом химической неустойчивости»). Проследим за тем, как изменяется состояние системы с возрастанием значения В. Увеличивая концентрацию В, мы как бы уводим систему все дальше и дальше от равновесия. При некотором значении В мы достигаем порога устойчивости термодинамической ветви. Обычно это критическое значение называется точкой бифуркации. [На особую роль этих точек обратил внимание Максвелл, размышляя над отношением между детерминизмом и свободой выбора (см. гл. 2 разд. «Язык динамики»).]

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука