Можно ожидать, что концентрация А,
соответствующая стационарному состоянию, возрастет с увеличением интенсивности света, и действительно так и происходит. Но, начиная с некоторой критической точки, мы сталкиваемся с одним из типичных сильно неравновесных явлений: сосуществованием множественных стационарных состояний. При одних и тех же условиях (например, интенсивности света и температуре) система может находиться в двух различных устойчивых стационарных состояниях, отвечающих двум различным концентрациям А. Третье (неустойчивое) стационарное состояние соответствует порогу между двумя устойчивыми стационарными состояниями. Сосуществование стационарных состояний порождает такое хорошо известное явление, как гистерезис. Но это еще не все. Если интенсивность света вместо того, чтобы быть постоянной, начнет случайным образом флуктуировать, то наблюдаемая нами картина резко изменится. Зона сосуществования двух стационарных состояний расширится, и при некоторых значениях параметров станет возможным сосуществование трех стационарных устойчивых состояний.В таких положениях случайная флуктуация во внешнем потоке, часто называемая шумом,
— отнюдь не досадная помеха: она порождает качественно новые типы режимов, для осуществления которых при детерминистических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в любой «естественной системе». Например, в биологических или экологических системах параметры, определяющие взаимодействие с окружающей средой, как правило, недопустимо считать постоянными. И клетка, и экологическая ниша черпают все необходимое для себя из окружающей их среды; влага, рН, концентрация солей, свет и концентрация питательных веществ образуют непрестанно флуктуирующую среду. Чувствительность неравновесных состояний не только к флуктуациям, обусловленным их внутренней активностью, но и к флуктуациям, поступающим из окружающей среды, открывает перед биологическими исследованиями новые перспективы.
Рис. 15. Явление «гистерезиса», возникающее, если значение параметра бифуркации b
сначала возрастает, а затем убывает. Если система первоначально находится в стационарном состоянии, принадлежащем нижней ветви, то при возрастании b она продолжает оставаться на нижней ветви. При b=b2 происходит перескок: система скачком переходит из состояния Q в состояние Q', принадлежащее верхней ветви. И наоборот, если система первоначально находится в состоянии, принадлежащем верхней ветви, то при уменьшении b она продолжает оставаться на верхней ветви до b=b1, после чего скачком переходит из состояния Р в состояние Р'. Бистабильные режимы такого типа встречаются во многих областях науки и техники, например в лазерах, химических реакциях и биологических мембранах.
7. Каскады бифуркаций и переходы к хаосу
В предыдущем разделе мы занимались рассмотрением только первой, или, как предпочитают говорить математики, первичной, бифуркации, которая возникает, когда мы вынуждаем систему перейти порог устойчивости. Далеко не исчерпывая новые решения, которые при этом могут появиться, первичная бифуркация приводит к появлению лишь одного характерного времени (периода предельного цикла) или одной характерной длины. Для того чтобы получить всю картину пространственно-временной активности, наблюдаемой в химических или биологических системах, необходимо продвинуться по бифуркационной диаграмме дальше.