Одно из наиболее удивительных открытий XX в. состоит в том, что такого рода описание не соответствует поведению динамических систем в общем случае,
поскольку «большинство» траекторий динамических систем неустойчиво[222]. Обозначим траектории одного типа (например, соответствующие «колебательным режимам») знаком +, а траектории другого типа (соответствующие «вращательным режимам») знаком *. Вместо картины, изображенной на рис. 30, где области колебательных и вращательных режимов разделены, мы получим в общем случае причудливую смесь состояний, что делает переход к отдельной точке весьма неоднозначным (см. рис. 31). Даже если известно, что начальное состояние нашей системы принадлежит области А, мы не можем заключить, что проходящая через него траектория принадлежит типу +: траектория вполне может оказаться типа *. Увеличение точности измерений и связанный с ним переход от области А к более узкой области В также ничего не дает, так как неопределенность в типе траектории сохраняется. Во всех сколь угодно малых областях всегда существуют состояния, принадлежащие каждому из двух типов траекторий[223].
Рис. 31. Схематическое изображение любой произвольно малой области фазового пространства V
динамически неустойчивой системы. Как и в случае маятника, существуют траектории двух типов (обозначенные + и *), но, в отличие от маятника, траектории обоих типов встречаются в сколь угодно малой области.
Для таких систем траектории становятся ненаблюдаемыми.
Неустойчивость свидетельствует о достижении пределов ньютоновской идеализации. Нарушается независимость двух основных элементов ньютоновской динамики: закона движения и начальных условий. Закон движения вступает в конфликт с детерминированностью начальных условий. В этой связи невольно вспоминается мысль Анаксагора о неисчерпаемости творческих возможностей частиц (семян), составляющих природу. По Анаксагору, любой предмет содержит в каждой своей части бесконечное множество качественно различных семян. В нашем случае любая область фазового пространства содержит огромное множество качественно различных режимов поведения.С этой точки зрения детерминистическая траектория применима лишь в ограниченных пределах. А поскольку не только на практике, но и в теории мы не можем описывать систему на языке траекторий и вынуждены,
использовать функцию распределения, соответствующую конечной (сколь угодно малой) области фазового пространства, нам остается лишь предсказывать статистическое будущее системы,Наш друг Леон Розенфельд имел обыкновение говорить, что понятия могут быть поняты лишь через их пределы.
В этом смысле можно утверждать, что мы достигли ныне лучшего понимания классической меха-пики, создание которой проложило путь к современному естествознанию.Как возникла новая точка зрения? Для того чтобы ответить на этот вопрос, нам придется описать те глубокие изменения, которые претерпела динамика в XX в. Хотя по традиции динамику принято считать архетипом полной, замкнутой отрасли знания, в действительности она подверглась коренным преобразованиям.
4. Возрождение динамики
В первой части нашей книги мы рассказали о динамике XIX в. Именно такую динамику излагают многие учебники. Прототипом динамической системы в XIX в. было принято считать интегрируемую систему. Решить уравнения движения означало «удачно» выбрать координаты — так, чтобы соответствующие импульсы были инвариантами движения. Такой подход исключал взаимодействие между частями системы. Ставка на интегрируемые системы провалилась. Как уже упоминалось, в конце XIX в. Брунс и Пуанкаре доказали, что большинство динамических систем, начиная со знаменитой проблемы трех тел,
неинтегрируемы.С другой стороны, сама идея приближения к равновесию, сформулированная на языке теории ансамблей, требовала выхода за пределы идеализации интегрируемых систем. В гл. 8 мы видели, что в теории ансамблей изолированная система находится в равновесии, когда она представлена «микроканоническим ансамблем» — все точки на поверхности заданной энергии равновероятны. Это означает, что для системы, стремящейся к равновесию, энергия должна быть единственной величиной, сохраняющейся в ходе эволюции системы. Энергия должна быть единственным инвариантом.
При любых начальных условиях система, эволюционируя, должна «побывать» во всех точках поверхности заданной энергии. Для интегрируемых систем энергия — далеко не единственный инвариант. Число инвариантов совпадает с числом степеней свободы, поскольку у интегрируемой системы каждый обобщенный импульс остается постоянным. Следовательно, интегрируемая система «заключена» на весьма ограниченном участке поверхности постоянной энергии (рис. 32) — пересечении всех инвариантных поверхностей.