Читаем Порядок из хаоса полностью

Рис. 32. Временная эволюция ячейки в фазовом пространстве р, q. «Объем» ячейки и ее форма сохраняются во времени. Большая часть фазового пространства недоступна для системы.


Чтобы избежать этих трудностей, Максвелл и Больцман ввели новый, совершенно иной тип динамической системы. Для таких систем энергия является единственным инвариантом, а сами системы получили название эргодических систем (рис. 33).

Рис. 33. Типичная эволюция в фазовом пространстве ячейки, соответствующей эргодической системе. «Объем» и форма ячейки сохраняются во времени, но на этот раз ячейка перемещается по всему фазовому пространству.


Выдающийся вклад в развитие теории эргодических систем внесли Дж. Биркгоф, фон Нейман, Хопф, Колмогоров и Синай (разумеется, наш перечень далеко не полон)[224],[225],[226]. Ныне мы знаем, что существуют обширные классы динамических (но не гамильтоновых) систем, которые эргодичны. Известно также, что даже сравнительно простые системы могут обладать более сильными свойствами, чем эргодичность. Для таких систем движение в фазовом пространстве становится сильно хаотическим (хотя в полном соответствии с уравнением Луивилля — см. гл. 7 — объем в фазовом пространстве сохраняется).

Предположим, что наше знание начальных условий позволяет нам локализовать систему в малой ячейке фазового пространства. Наблюдая за эволюцией ячейки, мы увидим, как она начнет деформироваться и изгибаться, испуская, подобно амебе, «псевдоножки» по всем направлениям и распространяясь в виде волокон, которые постепенно становятся все тоньше, пока наконец не заполнят все пространство. Ни один самый искусный рисунок не может по достоинству передать всей сложности реальной ситуации. Действительно, в ходе эволюции системы с перемешиванием две точки, сколь угодно близкие в начальный момент времени, могут разойтись в разные стороны. Даже если бы мы располагали столь обширной информацией о системе, что начальная ячейка, образованная представляющими ее точками, была бы очень мала, динамическая эволюция превратила бы эту миниатюрную область в настоящее геометрическое «чудовище», пронизывающее фазовое пространство своими нитями-щупальцами.

Рис. 34. Типичная эволюция в фазовом пространстве ячейки, соответствующей системе с перемешиванием. Объем по-прежнему сохраняется, но форма уже не остается неизменной: ячейка постепенно размазывается по всему фазовому пространству.


Продемонстрируем различие между устойчивыми и неустойчивыми системами на нескольких простых примерах. Рассмотрим двухмерное фазовое пространство. Через одинаковые промежутки времени станем производить преобразования координат, при которых старая абсцисса р переходит в новую абсциссу р—q, а старая ордината q — в новую ординату р. На рис. 35 показано, что произойдет, если применить эти преобразования к квадрату: квадрат деформируется, но после шестикратного действия преобразования мы возвращаемся к исходному квадрату. Система устойчива: соседние точки преобразуются в соседние. Кроме того, рассмотренное нами преобразование циклическое (после шести операций восстанавливается исходный квадрат).

Рис. 35. Преобразование объема в фазовом пространстве, порождаемое дискретным преобразованием: абсцисса р переходит в рq, ордината q переходит в р. Преобразование циклическое: после шестикратного повторения преобразования исходная ячейка переходит в себя.


Рассмотрим теперь два примера сильно неустойчивых систем. Первый пример чисто математический, второй имеет непосредственное отношение к физике. Первая система — преобразование, названное математиками по понятным соображениям преобразованием пекаря. Берется квадрат и сплющивается в прямоугольник. Половина прямоугольника отрезается, накладывается на другую половину, а получившийся квадрат снова «раскатывается» в прямоугольник. Последовательность операций, представленная на рис. 36, может быть повторена сколько угодно раз.

Рис. 36. Реализация «преобразования пекаря» В и обратного преобразования В-1. Траектории черной и белой точек позволяют понять, как происходит каждое преобразование.


Перейти на страницу:

Похожие книги

Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий

Злободневный интеллектуальный нон-фикшн, в котором рассматривается вопрос: как людям творческих профессий зарабатывать на жизнь в век цифровых технологий.Основываясь на интервью с писателями, музыкантами, художниками, артистами, автор книги утверждает, что если в эпоху Возрождения художники были ремесленниками, в XIX веке – богемой, в XX веке – профессионалами, то в цифровую эпоху возникает новая парадигма, которая меняет наши представления о природе искусства и роли художника в обществе.Уильям Дерезевиц – американский писатель, эссеист и литературный критик. Номинант и лауреат национальных премий.В формате PDF A4 сохранён издательский дизайн.

Уильям Дерезевиц

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература