В электроракетных двигателях (ЭРД) рабочее тело разогревается с помощью электричества и подается в реактивное сопло, создавая тягу. Первое преимущество налицо: такому двигателю не нужен окислитель, который занимает львиную долю топливных баков. Второе не так очевидно, но тоже имеет физический смысл: наиболее эффективны те виды топлива, которые обладают большей плотностью. Опыты с электроракетными двигателями начались в Советском Союзе уже в мае 1929 года под руководством талантливого молодого ученого Валентина Глушко, который работал в Газодинамической лаборатории в Ленинграде, а много позже стал одним из главных конструкторов ракетной техники и академиком.
В ходе исторических экспериментов Глушко удалось добиться эффекта «электрического взрыва», когда металлический проводник разогревался до миллиона градусов и мгновенно превращался в пар. Аналогичные опыты были проведены в США только в конце 1950-х годов. И получились совершенно шикарные цифры по удельному импульсу. Электрический взрыв вольфрамовой проволоки дал удельный импульс в 2200 секунд (на порядок больше кислородно-керосинового двигателя РД-107).
Эксперименты с алюминием, железом, медью, золотом и серебром дали разброс импульса от 1000 до 5000 секунд! Подставим последнее число в нашу формулу и получим на выходе 25 т – то есть корабль вместе с запасом металлического топлива будет весить всего 125 т и его можно будет вывести на опорную орбиту одной сверхтяжелой ракетой типа «Сатурн-5».
К сожалению, природа легко не сдается: при взрыве тяжелых металлов образуются твердые частицы, которые разрушают сопло. Посему имеет смысл использовать более легкие металлы с меньшим удельным импульсом (литий, натрий, бериллий, магний) и разогревать их постепенно, жертвуя реальной тягой. Другой путь – греть с помощью жаропрочного элемента инертный газ (гелий, ксенон, аргон).
Электроракетные двигатели уже находили применение в космонавтике. Например, в 2003 году к Луне был запущен аппарат «Смарт-1» (“SMART-1”, “Small Missions for Advanced Research in Technology”), на котором стоял французский двигатель PPS-1350-G. В качестве рабочего тела применялся разогретый до плазмы ксенон. Двигатель проработал в космосе приблизительно 5000 часов, истратив за это время 80 кг ксенона, причем удельный импульс составил 1670 секунд. Двигатели на ксеноне и ртути использовались в системах ориентации и маневрирования спутников СССР, США и Великобритании. Сегодня они находят все большее применение в межпланетных аппаратах. Три ксеноновых двигателя NSTAR установлены на американском аппарате «Рассвет», изучающем главный пояс астероидов. За время этой миссии, которая еще не завершена, будет израсходовано 425 кг ксенона при массе аппарата 1240 кг, удельный импульс достигает 3100 секунд – фантастическая величина! И сразу бросается в глаза, что «топливо» весит намного меньше, чем сам космический аппарат – при использовании обычных химических топлив все было бы ровно наоборот.
Электротермические ракетные двигатели планируется использовать и в дальнейшем. В 2004 году НАСА инициировало проект «Спутник юпитерианских ледяных лун» (“Jupiter Icy Moons Orbiter”, JIMO) – большого межпланетного аппарата, нацеленного на изучение системы спутников Юпитера. Научный модуль массой 1,5 т должны были доставить к далекой планете восемь ксеноновых двигателей “Herakles” с удельным импульсом 7000 секунд. К сожалению, из-за экономических трудностей этот проект заморожен.
Давайте возьмем удельный импульс 7000 секунд и подставим его в нашу формулу. На выходе получим 17 т ксенона. Получается, что корабль, создаваемый для полета на Марс и снабженный такими двигателями, будет весить всего-навсего 117 т (близко к грузоподъемности ракеты «Энергия»), и это не фантастика, а техническая реальность. Почему же конструкторы ракетно-космической техники не бросили все силы на создание электро-ракетных двигателей, отказавшись от «химии»?