Исследования продолжаются, но и того, что удалось выяснить, хватило для однозначного вывода: дно кратера Гейл состоит из отложений, которые образовывались на дне большого озера на протяжении десятков миллионов лет. Все нижние горизонты горы Шарпа представляют собой сотни перемежающихся слоев озерных, речных и ветровых отложений. Они свидетельствуют о многократном заполнении и испарении озера, которое, по мнению ученых, занимало большую часть площади кратера. Причем таких постоянных озер на Марсе могло быть много. Заместитель научного руководителя миссии Ашвин Васавада заявил:
Что касается следов жизни, то нас, похоже, ждут новые сенсации. 24 марта 2015 года научная группа анализатора SAM, стоящего на «Кьюриосити», объявила о первом обнаружении азота в составе газа, выделяющегося при нагреве образцов грунта. Азот входил в состав оксида NO, который, вероятно, образовался при разложении нитратов, а нитраты, как известно, содержат азот в форме, легко используемой живыми организмами. Пока нет подтверждений, что марсианские нитраты могут быть продуктом жизнедеятельности: в небольших количествах они образовываются в небиологических процессах (удары метеоритов, вулканическая деятельность и грозовые разряды). Тем не менее поскольку доказано, что в прошлом жидкая вода и органические вещества присутствовали в кратере Гейл, то выявление нитратов – еще одно свидетельство того, что условия древнего Марса были благоприятны для жизни.
В заключение этого обзора стоит упомянуть об открытии, косвенно указывающем на существование каких-то форм жизни под поверхностью современного Марса. В феврале 2005 года на первой большой конференции, посвященной промежуточным итогам изучения красной планеты с помощью аппарата «Марс-Экспресс», было сделано заявление о том, что планетарный спектрометр PFS (Planetary Fourier Spectrometer) выявил в атмосфере Марса значительное количество метана, который может иметь вулканическое или биологическое происхождение. Известно, что под действием ультрафиолетового излучения метан разрушается за 300–400 лет, и для того, чтобы его содержание оставалось на выявленном уровне (11 частей на миллиард), необходимо ежегодное поступление в количестве около 150–200 т. Теоретически для этого достаточно химических процессов в грунте – окисления железа горячих базальтовых пород с выделением водорода, который соединяется с углеродом, образуя метан. Однако обращает на себя внимание то, что зоны, где количество метана выше среднего по Марсу, географически очень четко накладываются на области с повышенным же содержанием льда и водных паров (в два-три раза выше среднего). Таких «оазисов» три: Земля Аравия (Terra Arabia), равнина Элизий (Elysium Planitia), Аркадия-Мемнония (Arcadia-Memnonia) – все они находятся поблизости от экватора, в умеренных широтах южного полушария. Примечательно также, что в этих зонах обнаружено большое содержание формальдегида (130 частей на миллиард). Формальдегид в условиях марсианской атмосферы должен разлагаться всего лишь за 7,5 часов. Чтобы он присутствовал в наблюдаемых количествах, необходим гораздо более высокий уровень «производства». Формальдегид получается при окислении метана, причем в реальных марсианских условиях в присутствии оксидов железа и влаги в грунте и под воздействием солнечного ультрафиолета этот процесс идет очень легко. Но если это так, то темп «производства» метана должен быть намного выше – порядка 2–5 млн т в год. Какой процесс может обеспечить столь высокий уровень поступления метана в атмосферу? Только бешеная вулканическая активность, которой сегодня на Марсе не наблюдается. С другой стороны, органическая жизнь может быть хорошим «поставщиком» метана (и, следовательно, формальдегида) в наблюдаемых количествах, синтезируя его из углекислого газа и водорода. К примеру, на Земле годовое поступление метана в атмосферу – около 500 млн т, и почти весь он биологического происхождения.