Но будьте внимательны. Есть множество потенциально интересных вопросов, ответы на которые не даст этот набор данных из четырех переменных. Это, например, раса и пол жертвы, полная стоимость украденных ценностей или кто из полицейских производит больше арестов. Вы также сможете получить данные только за определенный период (например, за последние три года), а это значит, что вы не сможете сказать, изменилась ли статистика преступлений за более долгий период времени. Эти вопросы могут выходить за планируемые рамки репортажа, и это нормально. Но будьте предусмотрительны: если вы уже начали анализировать данные, а потом решили, что хотите узнать процент преступлений, закончившихся арестом, будет уже поздно.
Хорошим советом здесь будет запросить ВСЕ переменные и данные из базы, а не только подмассив данных, который может дать информацию исключительно для текущего репортажа. На самом деле получить все данные будет дешевле, чем их часть, так как во втором случае придется платить агентству за программирование фильтра. Вы всегда сможете вычленить данные самостоятельно, а имея доступ к более широкому набору данных, сможете получить ответы, возникающие в процессе работы над статьей, и даже написать дополнительный материал. Возможно, политика конфиденциальности не позволит вам получить некоторые переменные (например, имена жертв или конфиденциальных осведомителей). Но даже часть данных это лучше, чем ничего, если вы хорошо понимаете, на какие вопросы может и не может ответить отфильтрованная база данных.
Сортировка беспорядочных данных
Самая сложная проблема в работе с базами данных заключается в том, что зачастую вам придется анализировать данные, собранные с бюрократической целью. Проблема в том, что требования, предъявляемые к точности обоих типов данных, будут различаться.
Например, база данных системы уголовного правосудия существует главным образом для того, чтобы некий подзащитный Джонс был вовремя доставлен из тюрьмы на слушание к судье Смиту. Поэтому не так уж важно, точно ли указана в базе дата рождения Джонса, правильно ли написан его домашний адрес и даже вторая инициала его имени. Эти неточные данные не помешают доставить Джонса в зал суда к судье Смиту в назначенное время.
Но такие ошибки могут помешать журналисту, работающему с данными, обнаружить в базе данных закономерность. Поэтому первым делом после получения новых данных следует определить, насколько они беспорядочны, и устранить ошибки. Сделать это быстро можно, создав таблицы частоты категориальных переменных, т.е. такие таблицы, где разброс значений по идее должен быть сравнительно небольшой. (в Excel, например, это можно сделать через фильтр или сводные таблицы).
Простой пример – графа «пол». Может оказаться, что в этой графе встречаются различные варианты: «мужской», «женский», «М», «Ж», «1», «0», «МУЖСКОЙ», «ЖЕНСКИЙ» и т.д., включая варианты с ошибочным написанием («жнский»). Для толкового гендерного анализа вам придется стандартизировать эти данные и остановиться, например, на М и Ж, а затем подвести все значения под единый стандарт. Есть еще одна известная база данных с подобными проблемами – это база финансирования избирательных кампаний в США, где в графе «профессия» может стоять «адвокат», «юрист», «юрисконсульт», «юрконсульт», «адв.» и прочие варианты, в том числе с орфографическими ошибками. Опять же, фокус в том, чтобы привести названия профессий к единому стандарту и существенно сократить список вариантов.
Упорядочение данных может оказаться еще более сложным, когда дело доходит до личных имен. А вдруг Джозеф Т. Смит, Джозеф Смит, Д.Т. Смит, Джоз. Смит и Джо Смит – это один и тот же человек? Возможно, придется обратить внимание и на другие переменные – адрес, дату рождения – и даже копнуть глубже, чтобы узнать наверняка. Попробуйте Google Refine. С ним задача упорядочения и стандартизации данных будет не такой трудоемкой и утомительной.
Данные могут содержать незафиксированную информацию
Образцом для расшифровки любой базы данных является так называемый словарь базы данных. Как правило, этот файл (он может существовать в виде текста, PDF или даже таблицы) содержит информацию о формате файла с данными (текстовый файл с разделителями, текстовый файл с полями фиксированной ширины, файл Excel, dBase и т.д.), порядке переменных, названии каждой переменной и типе каждой переменной (текстовая строка, целое число, десятичная дробь и т.д.). Эта информация вам понадобится для правильного импортирования файла с данными в анализирующую программу (Excel, Access, SPSS, Fusion Tables, различные вариации SQL и т.д.)