Читаем Поведение: эволюционный подход полностью

Наружная мембрана обладает высокой проницаемостью, поэтому химический состав межмембранного пространства сходен с химическим составом цитоплазмы. Внутренняя мембрана, напротив, непроницаема для большинства ионов, поэтому биохимический состав матрикса уникален. Он содержит сотни различных ферментов, в том числе ферменты цикла жирных кислот и цикла Кребса. Однако наиболее важные ферментативные комплексы расположены в самой внутренней мембране. Первоочередную роль из них играют: транспортные белки, ферменты дыхательной цепи и АТФ-синтетаза. Для увеличения площади поверхности внутренняя мембрана образует складки – кристы. Форма и количество крист зависят от функциональной активности митохондрий.

В матриксе находятся несколько копий кольцевой митохондриальной ДНК, митохондриальные рибосомы, транспортные РНК (т-РНК) и ферменты, регулирующие работу митохондриальных генов. Наличие собственного генома позволяет относить митохондрии к полуавтономным структурам.

Рибосомы – это самые мелкие органоиды. Они представляют собой частицы, состоящие из четырех разновидностей р-РНК и нескольких десятков видов белка. Состоят рибосомы из двух субъединиц, которые синтезируются в ядрышке, а объединяются в цитоплазме во время процесса трансляции.

Функцией рибосом является синтез белка. В цитоплазме рибосомы могут быть расположенны либо свободно, либо на мембранах ЭР. Причем между ними наблюдается определенное «разделение труда». Так, белки митохондрий и цитоскелета синтезируются на цитоплазматических рибосомах, а белки мембран и лизосом – на рибосомах ЭР.

7.4. Клеточное ядро

Клетка эукариотического организма всегда имеет ядро, что нашло отражение в названии группы. Ядро также можно рассматривать как отдельный компартмент, в котором выделяют как субсистемы поверхностный аппарат ядра, кариоплазму, хроматин и ядрышко.

Поверхностный аппарат ядра. Отграничивает ядро от цитоплазмы, что позволяет разграничить во времени и пространстве процессы транскрипции (синтез РНК) и трансляции (синтез белка). Этот факт имел принципиальное значение для эволюции эукариот.

Поверхностный аппарат ядра включает в себя наружную и внутреннюю ядерные мембраны и ламину. Наружная мембрана непосредственно переходит в мембраны ЭР со стороны цитоплазмы и во внутреннюю мембрану в области ядерных пор. Мембраны разделены перинуклеарным пространством.

Поры содержат восемь белковых глобул порового комплекса, с участием которых осуществляется взаимосвязь ядра и цитоплазмы. Обычно клетка содержит 3–4 тыс. пор.

Ламина – это плотный слой белковых фибрилл, примыкающих ко внутренней ядерной мембране. Она поддерживает форму ядра, участвует в формирование порового комплекса.

Кариоплазма. Аналог цитоплазмы для клетки. Хотя кариоплазма содержит комплекс фибриллярных белков, который обеспечивает структурную организацию компонентов ядра, вопрос о наличии в ядре аналога цитоскелета остается открытым.

Хроматин. Содержит ДНК, на которой записана наследственная информация организма. Хроматин представляет собой хромосомы, находящиеся в деспирализованном состоянии, в котором невозможна их индивидуальная идентификация. Хромосомы – это сложные ДНК-белковые образования, способные к структурным модификациям во время клеточного цикла.


Рис. 7.3. Кариотип человека


Каждая клетка любого организма содержит определенное число хромосом. Совокупность хромосом клетки называется кариотипом (рис. 7.3). Количество хромосом в кариотипе не зависит от уровня организации живых организмов – некоторые протисты имеют более тысячи хромосом. У человека – 46 хромосом, у собаки – 78, у коровы – 60, у дрозофилы – 8, у шимпанзе – 48, у картофеля – 48 и т. д.

В кариотипе выделяются пары одинаковых (по структуре, форме и генному составу) хромосом – это гомологичные хромосомы. Одна из них является хромосомой материнского организма, а другая – отцовского. Кариотип, в котором каждая хромосома набора представлена парой гомологов, называется диплоидным и обозначается 2n. Кариотип половых клеток содержит половинный набор хромосом (по одной хромосоме из пары гомологов), называется гаплоидным и обозначается n.

Генетическое определение пола связано с наследованием особых половых хромосом. Половые хромосомы также представляют собой пару гомологичных хромосом. Хотя они могут значительно отличаться по генному составу и структуре, у них обычно имеется гомологичный участок. Неполовые хромосомы называются аутосомами.

Пол, имеющий одинаковые половые хромосомы, называется гомогаметным, а пол, имеющий разные половые хромосомы, – гетерогаметным. Необходимо помнить, что формирование половых признаков, полового поведения – это сложный, многоступенчатый процесс, происходящий во время онтогенеза. Половой кариотип – только первая ступень этого процесса.

Перейти на страницу:

Похожие книги

Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Культурология / Биология, биофизика, биохимия / Философия / Биология / Образование и наука