Читаем Предчувствия и свершения. Книга 2. Призраки полностью

14 декабря 1900 года Планк на заседании Берлинского физического общества сделал доклад «К теории закона распределения энергии в нормальном спектре». Никто из слушателей не подозревал, что начинается новая эра в науке. Классическая физика, конечно, не завершилась с концом века. Но за две недели до начала нового, XX века родилась ее дочь — квантовая физика. Даже ее отец не понимал значения совершенного им.

Придав конкретный, физический смысл обеим постоянным, Планк, однако, не мог успокоиться. Их смысл оставался формальным. Нужно было понять, что они означают в действительности. Понять — это значило (тогда, а для многих означает и теперь) объяснить в рамках классических понятий. Вывести из законов классической физики.

Особенно тревожно обстояло дело с квантом действия.

Ведь для действия — произведения энергии на время — не существовало закона сохранения, подобного закону сохранения энергии или закону сохранения импульса. Действие могло, в соответствии с законами механики, изменяться произвольно и даже исчезать. Почему же здесь, выйдя за пределы механики в термодинамику и физику излучения — электродинамику — действие стало изменяться скачками?!

Стремясь к объяснению в духе классических понятий, Планк обрек себя на новые мучения. Все попытки понять суть дела оставались тщетными. Правда, пока рассматривались процессы медленные, протекающие с большими энергиями, все было в порядке. В этих случаях можно считать вторую постоянную бесконечно малой и трактовать процессы как непрерывные. Попросту не замечать ступенек, заменять лесенку плавной кривой. Так поступала классическая физика. Но если энергия была не велика или процессы происходили быстро, то соответствующее действие становилось соизмеримым с величиной таинственной постоянной, и возникали парадоксы типа ультрафиолетовой катастрофы. Несколько лет самого напряженного труда не позволили Планку примирить квант действия с понятиями классической физики.

Воспитание и стремление к традиционному мышлению сделали Планка консервативным человеком. Возникшая ситуация принесла ему много страданий: между квантом действия и классической физикой была пропасть. Но позже он оценил свои результаты оптимистически. В различных публикациях его отношение к кванту не вполне одинаково. В «Научной автобиографии» суть дела выражена одной фразой: «Провал всех попыток перекинуть мост через эту пропасть вскоре не оставил более никаких сомнений в том, что квант действия играет фундаментальную роль в атомной физике, и с его появлением в физической науке наступила новая эпоха, ибо в нем заложено нечто, до того времени неслыханное, что призвано радикально преобразить наше Физическое мышление, построенное на понятиях непрерывности и причинных связей с тех самых пор, как Ньютоном и Лейбницем было создано исчисление бесконечно малых». Опыт, этот высший судья, решил в микромире в пользу второй, квантовой альтернативы. Но понимание микромира в терминах классических понятий так и не возникало. За дело взялись молодые и пошли дальше.

Планк не признает свое отцовство

Первым, после пяти лет всеобщего молчаливого непонимания, сказал свое слово Эйнштейн. Он, подобно богу, сотворившему Еву из ребра Адама, сотворил из кванта действия квант энергии.

Если из формулы Планка вытекало, что электромагнитное поле, взаимодействуя с веществом, передает ему или получает от него энергию порциями, то Эйнштейн установил, что эти порции продолжают существовать в пространстве как своеобразные атомы излучения, кванты света. Впоследствии Комптон окрестил их фотонами.

Такой взгляд позволил Эйнштейну объяснить таинственный фотоэффект, при котором световые волны выбивают из вещества электроны. И делают это не так, как океанская волна, которая лижет и точит камень постепенно и незаметно. А как пуля, выбивающая из камня осколки.

Опыт говорил, что фиолетовый свет легко выбивал электроны, как ни мала интенсивность света. Но красный свет, даже при огромной интенсивности, мог действовать на металл сколь угодно долго, не выбивая ни одного электрона. Объяснить это свойствами волн невозможно. При помощи квантов света это выглядит просто и наглядно. Кванты красного света несут малые порции энергии. Каждый из них не способен передать электрону энергию, нужную тому для того, чтобы вырваться из металла. А каждый квант летит и падает на металл независимо от других. Практически невероятно, чтобы два кванта одновременно воздействовали на один электрон. Энергия же фиолетового кванта (она почти вдвое больше, чем у красного) достаточна для того, чтобы он мог в одиночку освободить электрон.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже