Максвелл не сразу осознал, что уравнения подсказали ему возможность самостоятельного существования в пустом мировом пространстве электромагнитных волн. Максвелл не сразу поддался обаянию простой картины мира, нарисованной его уравнениями. Для него было естественнее предположить, что электромагнитные волны являются движущимися волнами эфира. Ведь Максвелл, как и все его современники, находился под глубоким влиянием механики Ньютона и считал высшей целью науки объяснение всех явлений природы при помощи механики. Поэтому он настойчиво пытался построить механическую модель, способную отобразить все электромагнитные явления, в том числе и электромагнитные волны. Сохранились многочисленные эскизы различных механических конструкций, созданных воображением Максвелла на основе его уравнений. Многие из них представляют собой бесконечные наборы различных связанных между собой шестеренок, скомбинированных так, чтобы они моделировали волновые движения. Теперь нам, живущим в совершенно иную эпоху, кажется удивительным и странным, как гениальный создатель электродинамики мог надеяться на то, что ему удастся представить оптические явления при помощи комбинации движений множества шестеренок! Осознать это можно, лишь вспомнив, в какую эпоху он учился и творил.
Все усилия оставались тщетными. Модель могла иллюстрировать одно или несколько единичных явлений. Но никакая механическая модель не в силах объединить в себе всю совокупность разнообразных электромагнитных явлений. То, что у Фарадея было чрезвычайно простым, при механической трактовке становилось весьма сложным. Максвелл сам чувствовал, что созданная им теория переросла пределы возможностей механических моделей. В последующей работе он обходится без этих механических подпорок. Он стремится убрать строительные леса и формулирует теорию в замкнутой математической форме. Он пишет: «Теория, которую я предлагаю, может быть названа теорией электромагнитного поля потому, что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении…» Дальше констатации того факта, что в мировом пространстве имеется материя, находящаяся в движении, Максвелл, конечно же, не мог пойти. И так это было крамольное утверждение, ниспровергающее основы. И Максвелл сосредоточился на математическом углублении своей теории. Рождалась новая наука — электродинамика. Максвелл поставил свой целью«…показать, каким образом непосредственным применением идей и методов Фарадея лучше всего могут быть выяснены взаимные отношения различных классов открытых им явлений». Он пишет: «…Я имею в виду представить фарадеевскую теорию электричества с математической точки зрения…»
На эту титаническую работу ушло десять лет. Но полученные результаты не встретили признания. Одних смущали математические гипотезы. Они считали теорию спекулятивной. Другие не могли понять ее сложной математики, принять непривычное абстрактное понятие поля. Отлично сознавая значение своей работы, Максвелл решается на необычный шаг. Он отказывается от всякой служебной деятельности и, уединившись в родном доме, в течение последующих восьми лет пишет «Трактат по электричеству и магнетизму». Этот выдающийся труд представляется нам, людям ХХI века, образцом систематичности и ясности. Основные уравнения теории вобрали в себя всю совокупность известных фактов и, как мы теперь знаем, много неизвестного ни самому Максвеллу, ни его современникам. Именно они породили крылатую фразу о том, что уравнения зачастую знают больше, чем их создатель. Ведь в то время, когда Максвелл писал свой «Трактат», многие основные выводы теории еще не были получены.
Несмотря на то, что физическое содержание уравнений Максвелла не только не могло быть проиллюстрировано при помощи механических моделей, но и не поддавалось сведению к уравнениям движения ньютоновской механики, уравнения Максвелла, по существу, чрезвычайно точно соответствовали идейным основам, заложенным Ньютоном. Уравнения Максвелла, как и уравнения движения, являются законом, вернее, математической формулировкой закона, следующего из немногих «принципов», выражающих объективные закономерности природы, в данном случае связи между электрическими зарядами, токами и магнитами. Эти уравнения, в свою очередь, объясняют всю совокупность известных опытных фактов и предсказывают новые неизвестные явления без привлечения дополнительных гипотез.
Еще одна существенная черта сближает между собой великие творения Ньютона и Максвелла. Как и уравнения механики, система уравнений Максвелла содержит постоянные множители, неполучаемые из исходных «принципов». В законе тяготения — это гравитационная постоянная, в уравнениях Максвелла это диэлектрическая и магнитная проницаемости вещества. Эти множители можно определить только путем измерений. Но кощунство заключалось в том, что Максвелл приравнял к веществу… пустое пространство!