Легко представить, что происходит, если рассеяние такого типа претерпевает плоская световая волна, то есть волна, гребни и впадины которой образуют в пространстве систему параллельных поверхностей. При этом рассеиваемые волны тоже имеют структуру множества параллельных плоскостей. Но так как скорости распространения рассеянных волн вследствие различия длин этих волн различны, то первичные волны обгоняют рассеянные волны или отстают от них. В результате сложения с рассеянными волнами первичные волны частично отражаются и поворачивают обратно к возбудившему их источнику. Рассеяние такого типа называют обратным рассеянием. По мере увеличения мощности падающего лазерного излучения вынужденное рассеяние назад становится преобладающим. Волны, возбуждаемые лазером, проникают в вещество лишь на небольшую глубину, а затем поворачивают обратно и выходят из вещества так, как если бы они встретили на пути зеркало.
Навстречу времени
Практическое применение этого явления открывает поистине потрясающие возможности. Наиболее четко они могут быть выражены фразой: вынужденное рассеяние назад позволяет обратить для световой волны направление течения времени. Фразой, кажущейся безумной каждому, знающему, что время неотвратимо течет только в одном направлении: от прошлого к будущему.
Один из первооткрывателей нового явления Б. Я. Зельдович, сын академика Я. Б. Зельдовича, с которым мы еще встретимся неоднократно, и его сотрудники приводят в качестве примера такую картину. На вышке для прыжков в воду стоит девушка. Прыжок, и она касается руками гладкой поверхности воды. На поверхности воды возникают кольцевые волны, разбегающиеся в стороны, небольшое количество брызг взлетает вверх и падает вслед за тем, как тело девушки уходит под воду; волны постепенно успокаиваются, а девушка выплывает где-то вдали, чтобы не отвлекать нашего внимания. Кинооператор фиксирует все это на пленку.
Проявив пленку, оператор может воспроизвести описанную картину на экране. Если он захочет посмотреть ее еще раз, ему необходимо перемотать пленку в обратном направлении. Перематывая ее при помощи кинопроекционного аппарата, он увидит, как на гладкой поверхности воды возникают кольцевые волны, сбегающие к центру. Вдруг из центра возникают ноги девушки. Капли, поднимающиеся со всех сторон, слетаются к центру. Тело девушки постепенно поднимается над водой. Когда она снова окажется в воздухе, поверхность воды станет зеркально гладкой — все волны и капли исчезнут там, где девушка последний раз соприкасалась с водой. Затем девушка взмоет на вышку и улыбнется точно так же, как она улыбалась перед прыжком.
Такое возможно только в кино. В реальном мире время неуклонно течет от прошлого к будущему. Обратить течение времени невозможно.
Но в некоторых физических опытах можно наблюдать явления, которые в существенной мере приближаются к тому, что было при «обращении времени» при помощи кинофильма.
Простейший пример — хороший мяч, падающий на твердый пол. Еще лучше — стальной шарик, падающий на стальную плиту. Глядя на подскакивающий шарик, мы видим то же самое, что увидели бы, обратив вспять кинопленку, зафиксировавшую его падение. Конечно, шарик не достигнет исходной высоты. Причина ясна: трение о воздух, затрата энергии на возбуждение звуковых волн внутри шарика и плиты, а также в воздухе. Но Галилей научил нас, обдумывая опыты, отделять главное от второстепенного. Второстепенное здесь — потеря энергии. Главное — обратимость механических движений, выражающаяся в том, что время входит в уравнения механики обратимо. Изучая механику, можно изменять знак, стоящий в уравнениях перед временем.
Рассматривая процесс в целом, необходимо определить, когда отброшенные «мелочи» станут существенными, а математическая модель (уравнения) должна быть уточнена. Уточнение покажет, когда обращение времени становится не соответствующим реальности. Ответ прост. Нельзя аналогично толковать опыт с шариком в тех случаях, когда потери механической энергии слишком велики и каждый последующий подскок шарика много меньше предыдущего. В этом случае требуется учет трения, приводящего к выделению тепла, а значит, для описания опыта потребуется привлечение термодинамики.
Совершенно так же обстоит дело в оптике. Оказывается, что в оптике существуют явления, развивающиеся так, будто в течение коротких интервалов времени направление событий во времени может быть изменено на обратное.
Симметрия уравнений оптики (так же, как уравнений механики) такова, что обращение времени может быть заменено обращением направлений, то есть заменой реальных движении движениями, направленными противоположно.