В оптике для этого следует заменить направление распространения световых волн (вперед и назад, от центра к центру). Такую замену называют обращением волнового фронта, а если такое обращение возникает как следствие самовоздействия, например при вынужденном рассеянии, его называют самообращением волнового фронта. Теперь эффект самообращения может быть получен при различных вынужденных рассеяниях. Установлено, что эффект самообращения очень близок к тому, что происходит при голографии и в некоторых других случаях.
При вынужденном рассеянии Мандельштама — Бриллюэна удается добиться практически полного обращения волнового фронта. Вот несколько примеров того, что может быть при этом достигнуто.
Известно, что получение в твердотельных лазерах столь узких пучков излучения, как в лучших газовых лазерах, связано с огромными трудностями и большими затратами. Причина в сложности изготовления достаточно однородных лазерных кристаллов. Существенно, что количество и степень неоднородности возрастают при увеличении размеров кристалла. Поэтому попытки использовать большой лазерный усилитель для усиления излучения, получаемого от хорошего маломощного лазера, не приводят к успеху — неоднородности усилителя портят качество усиливаемого излучения. Попытки применить еще один усилитель или вторично применить первый лазерный усилитель приведут лишь к дополнительному ухудшению качества излучения.
Но если излучение, искаженное лазерным усилителем, подвергнуть обращению волнового фронта, оно вторично пройдет тот же лазерный усилитель в обратном направлении, причем все искажения, возникшие при первом проходе окажутся скомпенсированы при обратном проходе. С ним произойдет то же, что с девушкой на кинопленке. Двукратное прохождение в прямом и обратном направлении приведет все в исходное состояние. В случае с лазерным усилителем обращение волнового фронта и двукратное прохождение через усилитель приведет к увеличению интенсивности излучения без внесения в него искажений. Так, в рубиновом лазере плохого качества удалось полностью сохранить однородность усиливаемого излучения при увеличении его интенсивности в 400 раз. Это достигается потому, что каждый из участков световой волны, прошедший определенный путь внутри лазера-усилителя, проходит в обратном направлении в точности тот же путь. При этом все искажения, приобретаемые по пути вперед, выправляются во время пути обратно. Волна, прошедшая усилитель дважды в противоположных направлениях, отличается от волны, входящей в усилитель, только тем, что она усилена и идет в противоположном направлении.
При этом существенно, что скорость света так велика, что за время его двойного прохождения состояние усилителя практически неизменно. (Вспомним, что обращение времени может быть заменено обращением направлений, только если в условиях опыта не происходят изменения оптических свойств среды.)
Вслед за Н. Г. Басовым и его сотрудниками лазерные усилители с обращением волнового фронта на вынужденном рассеянии успешно применяют для лазерного нагрева малых мишеней при термоядерных и других исследованиях. Аналогичным способом возможно самонаведение излучения лазеров через неоднородные среды, например через атмосферу, или при применении дешевых оптических деталей сравнительно низкого качества. Этой возможностью предполагают воспользоваться создатели наземного лазерного оружия, предназначенного для поражения целей в космосе в ходе звездных войн.
Нелинейная оптика, ведущая свою родословную от Вавилова, нашла пути преобразования длины волны (цвета) лазерного излучения. Стало возможным создавать приборы, порождающие из невидимого инфракрасного излучения яркий зеленый свет или любой другой из цветов, входящих в спектр излучения Солнца и даже в невидимое ультрафиолетовое и в мягкое рентгеновское излучение.
Нелинейная оптика позволила разработать сверхчувствительные приемники света, аналогичные лучшим радиоприемникам, и реализовать стабильность частоты источников света, превосходящую стабильность лучших атомных часов.
Однако это выходит за пределы, очерченные рамками главы, охватывающей лишь то, что связано с рассеянием света. Об этом будет рассказано в другом месте.
ГЛАВА 3
ОБГОНЯЯ СВЕТ
Нужны исключительные обстоятельства, чтобы имя ученого попало из науки в историю человечества.
Увидеть невидимое!
В абсолютной темноте работали дни за днями молодые энтузиасты, изучавшие в начале тридцатых годов природу света.
Изучать свет в темноте! Что может быть нелепее этого! Но тем не менее в здании Академии наук на набережной Невы ученые ежедневно входили в совершенно затемненные комнаты и подолгу сидели в них, обдумывая предстоящие опыты. Да, они сидели в абсолютной темноте и ничего не делали.
Готовились. Подготавливали свои глаза. Лишь через час ощупью подходили к заранее отрегулированным приборам и приступали к работе.