В уединенной катушке, замкнутой сопротивлением, не могут происходить колебания. Возбудив в ней ток, легко убедиться, что он быстро прекратится, а энергия этого тока окажется затраченной на нагревание сопротивления.
Но если такая катушка, замкнутая на сопротивление помещена рядом с катушкой простейшего лампового генератора, изученного ван дер Полем, она способна радикально изменить поведение генератора. Никто об этом не знал потому что все считали это невозможным. Физики не искали новые режимы в генераторах с полутора степенями свободы. А если случайно обнаруживали в них хаотическое поведение, оставляли без внимания, относя его появление за счет случайных помех.
Такая странная ситуация, по-видимому, встретилась впервые!
Но как только физики начали искать, начали более внимательно исследовать генераторы с полутора степенями свободы, они обнаружили условия, при которых в них появлялся странный аттрактор, появлялся хаос и вместо периодических колебаний прибор генерировал шум. Конечно, это был электрический шум, хаотического изменения тока и напряжения. Но стоило присоединить к такому генератору, перешедшему в режим генерации хаотических колебаний, громкоговоритель или осциллограф, как шум становился слышимым или видимым.
Физики поняли и то, как это происходит. После включения источника питания генератора в нем самопроизвольно возникают и быстро увеличиваются колебания, период которых все время изменяется. Но при некоторых условиях система с полутора степенями свободы не может прийти в состояние устойчивых периодических колебаний, у нее нет простого аттрактора. В какой-то момент колебания прекращаются, и система на мгновение возвращается в состояние покоя. Но это состояние тоже неустойчиво.
Сразу вновь возникают и возрастают колебания. Но процесс не повторяет вторично того, что происходило в первый раз. Исходное состояние, скорость возрастания колебаний, пробегаемые при этом изменяющиеся значения периода — все отличается от первого раза. Затем новый срыв и новое начало, и так до тех пор, пока включен источник питания.
Многократные возрастания и мгновенные прекращения колебаний, каждое из которых не связано с предыдущим, создает полнейший хаос. Ученые всмотрелись глубже в механику возникновения этого хаоса. Поняли: причина кроется в том, что положение, в котором происходит срыв очередного нарастающего колебания, определяется случайными хаотическими токами и напряжениями, связанными с тепловым движением электронов, движущихся в катушках, конденсаторе и проводах схемы. После срыва колебаний система не попадает точно в положение равновесия. А если случайно попадает, то ее сразу выбрасывают из него на случайную величину и со случайной скоростью тепловые движения электронов. Поэтому начало каждого цикла тоже определяется законами случая. Но есть во всем этом и нечто общее. Многократно повторяющееся возникновение, рост и срыв колебаний. Ограниченная окрестность вокруг положения покоя, в которую система приходит после срыва, и ограниченное вокруг определенной длительности время, в течение которого происходит возрастание колебаний. Наибольшие амплитуды нарастающего колебания, достигаемые к моменту их прекращения, тоже заключены в определенных границах. В результате начальные и конечные характеристики каждого цикла колебаний притягиваются не к определенным значениям (к состоянию покоя или периодического движения), а внутрь сравнительно узких областей, обладающих определенными границами. Это и есть странный аттрактор. Он притягивает систему к состоянию хаотического движения.
Но он существует не всегда, а лишь при вполне определенном сочетании характеристик системы.
Это простейший странный аттрактор. Физики, конечно, принялись искать нечто подобное в разных процессах И нашли странные аттракторы в более сложных нелинейных колебательных системах. Возникновение и структура возникающего хаоса в более сложных системах еще не изучена. Ученые работают, и работают усердно, но задачи очень сложны. Они пока не поддаются теоретическому исследованию, а эксперимент приводит к столь запутанным результатам, что без разработки соответствующей теории его невозможно полностью осознать.
Пока удалось лишь выяснить, что существует несколько путей, по которым нелинейные колебательные системы переходят от регулярных движений к хаотическим. Наиболее простой из них называется путем удвоения. Он состоит в том, что колебательная система, совершающая регулярные колебания, внезапно теряет устойчивость и перескакивает в новый режим регулярных колебаний, характеризующихся удвоенным (по сравнению с первоначальным) периодом. Но вскоре система вновь теряет устойчивость и перескакивает в режим с учетверенным периодом колебаний, и так продолжается неограниченное число раз. При этом моменты потери устойчивости и состояния, из которых начинается следующий кратковременный режим, распределены совершенно хаотически. В результате таких последовательных удвоений очень быстро начинается настоящий хаос.