Читаем Приборостроение полностью

2) х = —∞;F(∞) = 0;

3) если аргумент x возрастает, т. е. если рассмотреть случай х2 > х1, то F(x2) > F(x1).

Если рассмотреть ΔF(х)=F(х2)-F (х1) то

6. Статистика распределения случайных величин

Основные характеристики случайных величин.

1. Меры положения.

Таковыми называют (считают) точки, вокруг которых происходит колебание характеристики величин.

Сумма произведений эмпирических значений случайной величены xi на соответствующие частности называется выборочным средним 

 – это статистическая характеристика, соответствующая параметрам, т. е. теоретическому анализу, называемая средним значением случайной величины или математическим ожиданием случайной величины.

Математическое ожидание обозначается как 

или м.о.(х), и определяется по уже известному теоретическому распределению.

При прерывности случайной величины


где p(x) – функция, которая определяет вероятности p(x) для всех xi случайной величины. При непрерывности случайной величины


где f(x) – плотность вероятности,

F(x) – функция распределения случайной величины.

Кроме вышеприведенных оперируют следующими мерами положения:

1) среднее гармоническое;

2) среднее логарифмическое;

3) скользящее среднее;

4) накопленное среднее.

Но эти меры используются не очень часто.

2. Меры рассеяния.

Если меры положения характеризовали точки, вокруг которых происходило колебание значений случайных величин, то меры рассеяния характеризуют группировку самих значений колеблющейся величины x или xi

Подхарактеристика мер рассеяния:

1. Выборочное среднее абсолютное отклонение

– абсолютное отклонение наблюденного значения xi случайной величины от выборочного среднего.

2. Выборочная дисперсия S2; она характеризует рассеяние или однородность случайной величины xi

7. Выборочное среднеквадратичное отклонение

Эта характеристика пользуется наибольшей популярностью:


При n1 = n2 =... = nk = 1, т. е. в случае несведения в разряды наблюденных значений xi,


Дисперсией δ2 теоретического распределения прерывной случайной переменной является математическое ожидание квадрата отклонения случайной величины х  от ее определенного значения xо ,т. е.


Это математическое ожидание представляет собой: если случайная величина прерывная, то


где p(xk) – вероятность случайной величины хk

Роль в теории вероятности среднего квадратичного отклонения наглядно показывает неравенство Чебы-шева, которое имеет вид:


где x – случайная величина;

хо – ее математическое ожидание;.

f > 0 – некоторый численный коэффициент.

Если взять t = 3, то из (40) следует:


что означает вероятность отклонения случайной величины x от своего среднего значения на величину большую, чем 3δ. Причем полученный результат справедлив при любом теоретическом распределении.

Как разновидностью меры рассеяния в приборостроении, пользуются коэффициентом изменчивости – вариации.

3. Еще одной важной разновидностью меры рассеяния в приборостроении для статистического анализа и контроля является размах выборки W, его также называют широтой эмпирического распределения.

W = ximax = ximin

Как видно из формулы, размах выборки характеризует однородность наблюденных значений случайной величины хг В зависимости от знака W, можно заключить об отношении случайной величины к мере положения (конкретно, выборочной медиане), что и видно из следующей системы:


8. Теоремы о средних значениях и дисперсиях

Теоремы о средних значениях и дисперсиях дают представление о том, как себя поведут средние значения и дисперсии при объединении нескольких выборок, у каждой из которых есть свое средневзвешенное значение случайной величины.

Пусть объемы N1, N2, ... ,Nk, которые имеют соответствующие средневзвешенные х1, x2, …, xk, объединены в одно.

Теорема 1. Математическое ожидание (среднее значение) суммы случайных величин равно сумме их математических ожиданий (средних значений).

То есть математическое ожидание суммы


точно так же себя ведет дисперсия.

Теорема 2. Дисперсия объединенной выборки S2 равна средневзвешенной из дисперсий отдельной выборки, сложенной с дисперсией средних xi частных выборок, т. е. если дисперсии S12,S22, …,Sk2 ־ принадлежат выборкам N1, N2, ... ,Nk, то в случае объединения этих выборок общая дисперсия



Очевидно, что объемы N1, N2, Nkобъединены в одну выборку с соответствующими дисперсиями

S12,S22, …,Sk2

Вторым слагаемым является дисперсия средних xi частных выборок около среднего объединенной выборки х. Поэтому очевидно, что


то второе слагаемое тоже равнялось бы нулю. В таком случае


где S2 – средневзвешенная из дисперсий исходных выборок.

Таким образом, дисперсия суммы (или разности) независимых случайных величин равна сумме дисперсий этих величин.

В общем случае,

9. Закон распределения Пуассона и Гаусса

Перейти на страницу:

Все книги серии Шпаргалки

Похожие книги

Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность