Первый открыватель реального внутреннего пространства, определяемого молекулярными химическими и кристаллическими структурами живого организма Пастер недаром понимал всю важность и коварность своего открытия для таких представлений. Он вырос почти в идиллической атмосфере научных понятий об изотропном космическом и земном пространствах, то есть таких, все направления которых равнозначны, упрощенно говоря, где действие равно противодействию, где левое должно отражаться в правом зеркально, но вдруг оказалось, что он попал в какое-то зазеркалье Льюиса Кэрролла, где отражается совсем не то, что стоит перед зеркалом, где нет правого совсем, а только одно левое. Это и есть анизотропное пространство, где направления направо и налево неравноценны.
И автор “Алисы” тоже не случайно изобразил свой странный мир, потому что математики давно уже предвещали открытие Пастера в более общих абстрактных построениях нетрадиционных геометрий. Все они предугадывали расширение научной реальности, только источник этого расширения оказался не в далеких галактиках, отстоящих от нас на сотни парсеков, а в живых структурах, таких всем близких, привычных и знакомых. Внутри живого открылись целые миры, ни на что привычное не похожие.
Вернадский стал первым, кто смог охватить ЖВ во всей его сложности и, абстрагируясь от множества чисто биологических свойств жизни как таковой, пытался выразить их в терминах пространства-времени. Но его представление требует уточнений, дальнейшей обработки с разных сторон, и отличения естественных противоречий, пропусков и недосказанностей, свойственных первооткрывателю, от бесспорных достижений и новшеств. Одно из противоречий – отношение к Ньютону, типичное для научной атмосферы начала века, когда нужно было преодолеть прямолинейный механицизм. Зато Вернадский не впал в еще более рафинированный механицизм, в который впало большинство, увлекшись построениями теории относительности. Он сознавал ограниченность новой механики по отношению и в сравнении со сложностью объекта живой материи, с которой он и другие естествоиспытатели имели дело. В частности, Вернадскому было чрезвычайно трудно установить связность биологического пространства-времени жизни в те годы, когда термин пространство-время неизбежно увязывалось с именами Эйнштейна и Германа Минковского и доказывать, что это совсем другое время-пространство, чем то, которое он видит в живой материи. Если в теории, о которой идет речь, пространство-время есть математическое построение, то в биологическом движении, о котором данная теория ничего не говорила, вернее, которое она спокойно отождествляла с механическим перемещением любых тел, он встречался с реальным двуединым пространством-временем, которое невозможно разделить. По сути дела и до сей поры связное биологическое время-пространство еще не охвачено теоретической мыслью. Он думал, и вероятно, его идеи здесь имеют огромные исследовательские перспективы, что понимание связного времени-пространства ЖВ может быть отделено от математического такого же понятия через рассмотрение симметрии, поскольку явление симметрии более чем наглядно для различения. “В основе явлений симметрии в живом веществе время выступает в такой форме и значении, в каких это не имеет места в косных телах и явлениях.
Здесь, мне кажется, в основе геометрических представлений ярко проявляется не столько пространство, сколько новое, входящее в понимание испытателя природы в ХХ в. понятие о пространстве-времени, отличном и от пространства и от времени.
Живое вещество – это единственный пока случай, где именно оно, а не пространство, наблюдается в окружающей натуралиста природе.
Это пространство-время не есть то пространство-время, в котором время является четвертым измерением пространства – пространства математиков (Палади, Минковский), и не пространство физиков и астрофизиков – пространство Эйнштейна.
Проявляющееся в симметрии пространство-время живого вещества в нашем окружении характеризуется для него: а)