Другое представление, более общее, говорит Вернадский, связывало появление жизни с определенными периодами общего эволюционного процесса. В сознание ученых глубоко внедрилась эволюционная идея и соединилась там с моделью божественного творения. Идея прогрессивного восхождения организмов распространялась и на неживую материю. Особенно оно было свойственно нашим ученым в период советской власти, потому что здесь дарвинизм принял особенную философскую форму, стал важнейшей частью мировоззрения, явившись оправданием идеи материалистического развития и совершенствования организмов вплоть до общественной задачи “воспитания нового человека”. По этой причине получило такую официальную поддержку учение о происхождении жизни на Земле, созданное биохимиком А.И. Опариным. (Опарин, 1957). Он выступил с идеей химической эволюции, которая в результате совпадения благоприятных условий: нужной температуры, давления, химической обстановки, влияния различных электрических факторов привела к созданию так называемых коацерватов – химически сложных молекул, обладавших отбором и сохранением признаков. Нет нужды говорить, что Вернадский настороженно относился к данной гипотезе, не имевшей никаких биохимических результатов и тем не менее сохранявшейся в государственно одобряемой науке на самом виду.
Кроме того, при оценке и рассмотрении организованности планеты, в котором центральное место занимает живая оболочка ее, следует учесть и еще один серьезный фактор, значение которого в науках о живой материи и тем более о Земле не принималось во внимание во времена Вернадского и сейчас еще не принимается: диссимметрию ЖВ биосферы. Причина здесь в том, что биологическое время отрывается от биологического пространства даже теми, кто признает его само по себе и связывает с ним направление из прошлого в будущее через настоящее, дление и деление, необратимость и другие, менее отчетливые признаки. Но только Вернадский связал с биологическим временем такой серьезный фактор как диссимметрию биологического пространства. Он первым обобщил диссимметрию Пастера и Кюри, о которой говорилось выше, на состояние пространства всей биосферы.
Как мы помним, диссимметрия открыта биохимиком Пастером и далее исследована им уже как свойство живых бактерий накапливать и использовать вещество одного из двух возможных изомеров и была названа молекулярной диссимметрией, поскольку сохранялось диссимметрическое свойство не только в кристаллах, но и в растворах. Пастер обнаружил, что бактерии питаются только одним из двух возможных изомеров и игнорируют другой, несмотря на химическую неразличимость правого и левого вещества. Несколько по-другому, более абстрактно рассматривал диссимметрию Пьер Кюри. Он подошел к ней как математик, геометр, и назвал диссимметрию одним из реальных
Вот с обобщения “диссимметрия есть состояние пространства” и начинает Вернадский. Пожалуй, ни один вопрос общего строения биосферы не казался ему таким важным как пространственная диссимметрия. Он считал, что она представляет собой проходящую через все научные дисциплины проблему. И молекулярное, и кристаллическое строение вещества, и строение клетки, макроскопические свойства больших организмов, геологические особенности планеты, солнечной системы, далекие галактические туманности – везде, по его мнению, наблюдалось неравенство правого и левого. И потому в каждой работе тридцатых годов о ЖВ и биосфере, обязательно возникала тема диссимметрии. В том числе и в специально посвященном диссимметрии 4-м выпуске цикла статей “Проблемы биогеохимии”, который так и назывался – “О правизне и левизне”. (Вернадский, 1980, с. 165 – 178).
Вернадский утверждает, что за время, прошедшее после Пастера и Кюри, теоретическая мысль почти не затрагивала проблему диссимметрии. Некоторое продвижение наблюдалось в кристаллографии. Русский кристаллограф Е.С. Федоров и независимо от него немецкий математик А. Шенфлис, нашли все возможные способы строения вещества. Их оказалось 219. Из них 11 групп проявляют свойства неравенства правизны и левизны, так как в данных кристаллических пространствах отсутствуют центры симметрии, плоскости и оси сложной симметрии. К таким кристаллическим пространствам относятся те, которые образуются внутри ЖВ.