Читаем Приглашение в теорию чисел полностью

Приглашение в теорию чисел

Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Р

Ойстин Оре , О. ОРЕ

Математика / Научная литература / Прочая научная литература / Образование и наука18+

О. ОРЕ

ПРИГЛАШЕНИЕ В ТЕОРИЮ ЧИСЕЛ

Перевод с английского

Л. А. САВИНОЙ и А. П. САВИНА

Библиотечка "Квант", выпуск 3

МОСКВА «НАУКА»

ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ

1980



ОТ ПЕРЕВОДЧИКОВ

Имя О. Оре (1899–1968) хорошо известно у нас в стране. Две его книги по теории графов, переведенные на русский язык (О. Оре. Теория графов. — М.: Наука, 1968 и Графы и их применение. — М.: Мир, 1965) были тепло встречены читателями в СССР. С большим интересом был принят и перевод его книги о Нильсе Абеле (О. Оре. Замечательный математик Нильс Хенрик Абель. — М.: Физматгиз, 1961.)

Предлагаемая читателю книга О. Оре «Приглашение в теорию чисел» относится к чрезвычайно редкостному типу научно-популярных книг. Как правило, научно-популярные книги по математике имеют своей целью научить читателя чему-либо или дать ему представление о той или иной ветви математики. О. Оре не ставит перед собой ни той, ни другой задачи. Его цель — заинтересовать читателя математикой (а читателем предполагается школьник 13–17 лет), привить ему вкус к этой древней, но вечно юной науке.

Оре рассказывает о магических квадратах и числовых ребусах, вычислении дней недели и составлении расписаний соревнований — вещах либо интригующих, либо имеющих реальное практическое значение. В результате, если читатель и не захочет стать математиком (а ими становятся единицы), то он надолго сохранит впечатление о красоте математики, силе и широте диапазона применений ее на практике.

Написанная просто и доступно, эта книга (за исключением нескольких страниц) может быть легко прочитана школьником начиная с 5–6 класса. Поскольку этот перевод адресован в первую очередь школьникам, то переводчики сочли необходимым полностью сменить рекомендуемую литературу на книги, доступные этой категории читателей.

ГЛАВА 1

ВВЕДЕНИЕ

§ 1. История

Теория чисел — это ветвь математики, имеющая дело с целыми положительными числами

1, 2, 3…,

которые также называют натуральными числами.

Археология и история учат нас, что человек рано начал считать. Сначала он научился складывать числа, потом, много позже, умножать и вычитать их. Деление чисел было необходимым для распределения на равные части кучи яблок или улова рыбы. Эти действия над числами называются вычислениями. В некоторых случаях последовательность вычислений называют «калькуляцией». Это слово происходит от латинского calculus, означающего «маленький камень», поскольку римляне пользовались морской галькой при вычислениях на своих счетных досках.

Как только люди немного научились считать, этот процесс стал приятным времяпровождением для многих людей, склонных к абстрактному теоретизированию. Знания о числах накапливались в течение многих веков, порождая интерес к новым исследованиям, которые в свою очередь приумножали эти накопления. И сейчас, в современной математике, мы имеем величественную конструкцию, известную как теория чисел. Некоторые части этой теории все еще составляют простые игры с числами, а другие относятся к наиболее трудным и сложным разделам математики.

§ 2. Нумерология

Некоторые следы размышлений о числах в давние времена можно обнаружить в суеверных предрассудках, связанных с числами. Среди чисел есть «счастливые», которым нужно отдавать предпочтение и радоваться при встрече с ними, и «несчастливые», которых нужно остерегаться, как дурного глаза. Мы обладаем обширными сведениями о нумерологии в античной Греции, мыслях и предрассудках, связанных с символическим значением различных чисел. Например, нечетные числа, большие единицы, символизировали мужское начало, а четные — женское; таким образом, число 5 — сумма первого мужского и первого женского чисел — символизировало супружество или союз.

Желающие познакомиться с более развитой «теорией» магических чисел могут сделать это, прочтя восьмую книгу «Республики» Платона. Такая «наука» мало что дает в смысле математических идей, но она содержит умение обращаться с числами и их свойствами. Как мы дальше увидим, некоторые замечательные проблемы в теории чисел, до сих пор занимающие умы математиков, берут свое начало из греческого учения о магических числах.

До сих пор у нас нет оснований считать себя выше предрассудков, связанных с числами. Вероятно, у каждого есть знакомые, которые ни за что не посадят за стол 13 гостей, а как мало в гостиницах США этажей и комнат с номером 13. По существу, мы не знаем, откуда взялись подобные «табу» на числа. Существует множество всевозможных объяснений, но большинство из них совершенно безосновательны. Например, в «Библии» записано, что на Тайной вечере было 13 гостей, разумеется, тринадцатым был Иуда. Если же заметить, что многие предметы считаются дюжинами, а число 13 дает «чертову дюжину», т. е. лишний предмет, то это соображение имеет больший реальный смысл.

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука