§ 3. Алгебра сравнений
Из алгебры мы помним, что уравнения можно складывать, вычитать, умножать. Точно такие же правила справедливы для сравнений. Предположим, что мы имеем сравнения
По определению, это означает, что
где
В результате получаем
что можем записать как
другими словами, два сравнения можно складывать. Таким же образом можно показать, что одно сравнение можно вычитать из другого, т. е. что
11 ≡ —5 (mod 8) и 7 = — 9 (mod 8). (7.3.5)
Складывая их, получаем
18 ≡ — 14 (mod 8),
а вычитая,
4 ≡ 4 (mod 8).
Оба эти сравнения справедливы.
Можно также перемножить два сравнения. Из (7.3.1) и (7.3.2) следует, что
таким образом,
77 = 45 (mod 8).
Сравнение
Это можно рассматривать как частный случай умножения сравнений (7.3.6) при
33 = -15 (mod 8).
Возникает естественный вопрос: в каком случае можно в сравнении (7.3.7) сократить общий множитель
Именно здесь сравнения отличаются от уравнений. Например, верно, что
22 ≡ -2 (mod 8),
но сокращение на множитель 2 дало бы сравнение
11 ≡ -1 (mod 8),
которое неверно.
В одном важном случае сокращение допустимо:
Если
4 ≡ 48 (mod 11)
мы можем сократить на множитель 4, так как
1 ≡ 12 (mod 11).
1. Придумайте еще несколько примеров на использование изложенных правил действий со сравнениями.
§ 4. Возведение сравнений в степень
Предположим вновь, что имеется сравнение
Как мы только что видели, можно умножить это сравнение на себя, получив
Вообще можно, умножив это сравнение на себя нужное количество раз, получить
для любого целого положительного числа
8 ≡ -3 (mod 11)
после возведения в квадрат следует сравнение
64 ≡ 9 (mod 11),
а после возведения в куб получаем сравнение
512 ≡ -27 (mod 11).
Многие результаты теории сравнений связаны с остатками высоких степеней чисел, поэтому покажем, как можно продолжить процесс возведения в степень. Предположим, например, что мы хотим найти остаток сравнения
389 (mod 7).
Одним из путей для выполнения этого является повторное возведение в квадрат. Мы находим:
9 = 32 ≡ 2 (mod 7),
34 ≡ 4,
38 ≡ 16 ≡ 2,
364 ≡ 4 (mod 7).
Так как
89 = 64 + 16 + 8 + 1 = 26 + 24 + 23 + 1,
то отсюда следует, что
389 = 364 • З16 • З8 • 3 = 4 • 4 • 2 • 3 ≡ 5 (mod 7).
Таким образом, остаток (по модулю 7) есть 5, или, говоря другими словами, в соответствии с изложенным в § 2, последняя цифра числа З89, записанного в системе счисления при основании 7, равна 5.
В действительности, для того чтобы найти этот остаток, мы записали показатель степени
89 = 26 + 24 + 23 + 1 = (1, 0, 1, 1, 0, 0, 1)
в двоичной системе счисления. Повторным возведением в квадрат мы нашли остатки (по модулю 7) тех степеней числа 89, которые сами являются степенями числа 2:
1, 2, 4, 8, 16, 32, 64.
Соответствующий метод можно использовать для любых других оснований. Однако в частном случае бывает возможность упростить вычисление, если заметить особенности этого случая. Например, в случае, разобранном выше, мы можем отметить, что
33 ≡ -1 (mod 7),
З6 ≡ 1 (mod 7),
откуда заключаем, что
384 = (36)14 ≡ 1 (mod7).
Поэтому
389 = 384 • 33 • 32 ≡ 1 • (-1) • 2 = -2 ≡ 5 (mod 7),
как и раньше.
В качестве другой иллюстрации сказанного можно рассмотреть числа Ферма, с которыми мы познакомились в § 3 гл. 2:
Первые пять чисел Ферма таковы:
Отсюда можно высказать предположение:
Докажем с помощью сравнений, что это действительно так. Очевидно, что оно равносильно утверждению, что числа
22ⁿ, n = 2, 3…
оканчиваются цифрой 6. Это можно доказать по индукции. Заметим, что
22² = 16 ≡ 6 (mod 10),
22³ = 256 ≡ 6 (mod 10),
22ˆ
Более того, если мы возводим в квадрат число 22ˆ