Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

Из этой таблицы видно, что при одном и том же угле расширения струи и клуба в струю должно вовлекаться в  больше окружающего воздуха, чем в клуб. При одинаковом вовлечении вещества в струю и в клуб расширение струйного потока будет меньше, чем угловое расширение клуба. Этот факт подтверждается данными многочисленных экспериментов. Отметим, что в Таблицу 3.5 не вошел класс, соответствующий очень устойчивой атмосфере (класс G). Кроме того, нами включены значения характеристик расширения потока при покоящемся атмосферном воздухе (класс S-штиль). Устойчивость потока в этом случае полностью определяется турбулентностью вещества струи.

Анализ Таблицы № 3.5 показывает, что числовые значения коэффициентов вовлечения в зависимости от условий окружающей среды могут варьироваться в широких пределах, изменяя массы вовлекаемого в выброс воздуха более, чем в десять раз. Соответственно этим массам будут существенно меняться геометрические, динамические и концентрационные характеристики его вещества. Это подтверждает вывод о недопустимости рассмотрения коэфициентов вовлечения в виде единой постоянной величины независимо от метеопараметров.

Для использования полученных в работах [50] и [90] результатов для случая расчета высокотемпературной струй при аварийных ситуациях типа пожара необходимо сделать допущение о характере стандартных отклонений ветра. Предполагается, что стандартные отклонения направления ветра в горизонтальной и вертикальной плоскостях примерно равны, т. е.

=

где

 — дисперсии углов расширения потока в горизонтальной и вертикальных проекциях соответственно;

 = arc tg(dR/ dl).

Физически это означает, что струя имеет практически круглое сечение. Неизотропность поля ветра относительно поперечных осей не нарушает общности рассмотрения и в большинстве практических задач может не учитываться. Этот эффект следует рассматривать для случаев струйных потоков в непосредственной близости от подстилающей поверхности.

Известно, что величины и , представляющие собой осредненные по времени значения флуктуаций угловых направлений ветра в горизонтальной и вертикальной плоскостях, могут быть получены непосредственно с флюгера.

Подводя итоги этого раздела, можно сформулировать методику нахождения коэффициентов вовлечения, необходимых для создания математических моделей и решения практических задач возникновения и движения в атмосфере газообразных выбросов. Она состоит из трех этапов.

На первом этапе в зависимости от наличия конкретной информации о метеорологических параметрах в месте работы определяется группа устойчивости атмосферы по одной из таблиц 3.1–3.4.

На втором этапе по Таблице № 3.5. находят соответствующую группе устойчивости угловую характеристику расширения турбулентного потока и его коэффициент углового расширения к.

Наконец, по формулам (3.14) или (3.19) определяют числовое значение коэффициента вовлечения в струйный поток или к в компактный объем (клуб) в зависимости от характера выброса.

<p>3.4. Геометрические характеристики формирующихся кратковременных выбросов</p>

Формирование кратковременного выброса существенно зависит не только от расходных характеристик

источника загрязнений и атмосферной турбулентности (через коэффициент вовлечения), но и от формы выброса и от площади его поверхности контакта с атмосферным воздухом. Через эту увеличивающуюся поверхность происходит вовлечение окружающей «холодной» среды, которая определяет газодинамические концентрационные и энергетические характеристики вещества выброса. Рассмотрим на примере истечения газа из сопла, как формируются кратковременные выбросы.

Наблюдения за истечением кратковременных струй из сопел показывают, что форма выброса в зависимости от времени работы ракетного двигателя в первые мгновения меняется от части сферы, ограниченной сегментом вращения, до полусферы. Затем форма выброса может хорошо быть смоделирована как суперпозиция усеченного конуса и полусферы. Увеличение временной координаты для неизменных атмосферных условий приводит лишь к изменению масштаба выброса, остающегося практически самоподобным.

Поскольку истечение из ракетных сопел происходит с большими скоростями, то в первом приближении может быть оправданным подход при котором считается формирование полусферического выброса происходящим за первый шаг интегрирования задачи. Далее выброс представляется суммой полусферы и удлиняющегося усеченного конуса (Рис. 3.4).

Для определения координаты центра масс полусферического выброса х* радиуса R = d0 (Рис. 3.4а) приравняем массы газа в части выброса при х = х* массе газа в части выброса при х х*.

Получаем:

В этом выражении:

— радиус сопла;

Рис. 3.4. Схема формирования кратковременного выброса при истечении газа из сопла: а) переходный процесс возникновения выброса в окрестности сопла; б) развитый самоподобный выброс.

 — уравнение образующей полусферической поверхности выброса;

1 и 2 — плотности газа в левой (х = х*) и правой (х х*) части выброса, соответственно.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже