Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

Струи существуют при постоянной работе генерирующей установки, поэтому возникающие при их работе высотные площадные источники загрязнений являются стационарными.

В условиях штиля струи от пожара способны подняться на большие высоты и, не теряя динамической индивидуальности, преодолеть пограничный слой атмосферы. Разрушение мощного струйного потока и образование вторичного источника в этом случае могут начаться на высотах в несколько километров. Загрязнение воздуха в приземном слое при этом будет минимальным.

Выбросы в виде клубов или компактных облаков возникают при «мгновенном» или кратковременном действии генерирующего их источника. На открытом пространстве они участвуют в двух движениях: тепловом подъеме под действием сил плавучести и переносном движении под действием ветра в горизонтальной плоскости.

Интенсивное вовлечение воздуха в движущийся клуб приводит к резкому увеличению его размеров, росту силы аэродинамического сопротивления движению в потоке и замедлению скорости всплывания. На завершающем этапе своего существования движение клуба становится уже неразличимым на фоне внешнего пульсационного движения среды. Он разрывается и растаскивается атмосферными вихрями — таким образом начинается процесс рассеивания вещества выброса. Загрязняющая примесь под действием атмосферной дисперсии распространяется вдоль ветра и в поперечном ему направлении в соответствии с физическими характеристиками диффузии.

Квазиструйные выбросы (их еще называют [11] плавучими струями) являются геометрическими гибридами струй и клубов. Они возникают, когда струя еще не сформирована, а возникший в атмосфере объем уже не может считаться клубом из-за неоднородности макроскопических характеристик вещества в нем. Расчет физических характеристик таких образований и их движения в атмосфере представляет большие трудности и, как правило, обходится разработчиками и авторами книг рассмотрением предельных оценок.

Отметим, что независимо от типа выброса и его формы загрязняющий объем проходит две фазы развития. На первой фазе движения горячего выброса определяется сносящим ветровым потоком и собственной турбулентностью. Вовлечение в выброс происходит через подветренную его поверхность и пропорционально  и относительной скорости траекторного движения.

Во второй фазе внутреннее турбулентное движение ослабевает, а доминирующим становится деструктивное воздействие вихрей атмосферы. Эти вихревые структуры определяют повышенный уровень вовлечения окружающего воздуха и увеличение размеров загрязняющего объема.

По специфике воздействия атмосферы на выбросы различают [132] три характерных случая: устойчивый, нейтральный и неустойчивый.

В случае устойчивой атмосферы поднимающийся выброс в зависимости от высотного градиента температуры окружающей среды может приближаться к равновесной высоте по траекториям 3-х типов (см. Рис. 3.8). При слабом градиенте е плотность выброса монотонно приближает к е, не достигает этой величины.

Рис. 3.8. Теоретически возможные траектории выбросов при разных состояниях атмосферы: устойчивом — 1; нейтральном — 2; неустойчивом — 3; асимптотическая высота подъема — 4

При более резком уменьшении Те с высотой выброс становится тяжелее окружающего воздуха, проскакивает по инерции уровень р = ре и возвращается на равновесный уровень по колебательной или монотонной траекториям (верхние траектории 1 на рисунке).

Атмосферная турбулентность устойчивой атмосферы очень слабая и на подъем выброса оказывает минимальное воздействие.

При нейтральной атмосфере относительная плотность вещества выброса остается постоянной на всей его траектории. Вследствие интенсивной турбулентности атмосферы возрастает вовлечение в него окружающего воздуха. Увеличивается его размер и масса, однако наличие перегрева приводит к его постоянному всплытию (кривая 2 на Рис. 3.8).

В случае неустойчивой атмосферы относительная плотность вещества выброса резко уменьшается с высотой, а высокий уровень турбулентных пульсаций окружающего воздуха резко усиливает процесс вовлечения. Высокое значение температурного градиента а приводит к теоретически неограниченному подъему выброса (кривая 3 на Рис. 3.8).

Поведение газообразных выбросов в атмосфере зависит от относительной плотности (температуры) их вещества — тяжелее или легче газ окружающего воздуха. При относительно легком газе ( е) выброс под действием силы тяжести устремляется вверх; при е— опускается к поверхности земли. Так ведут себя тяжелые углеводородные газообразные топлива и многие токсичные газы (соединения хлора, фтора и других веществ).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже