И это не предел! На чертежных досках - чертежи новых машин. Использовав новые конструктивные принципы, добились того, что еще более мощные машины будут равны по размерам машине, мощность которой в десять раз меньше.
А в конструкторских бюро НИИ и заводов - на ленинградской "Электросиле", на харьковском "Электротяжмаше", на новосибирском "Сибэлектротяжмаше" серьезно думают уже об электрических машинах, каждая из которых - план ГОЭЛРО. И вводиться в строй такие машины будут десятками в год.
Изменилось и напряжение, при котором передается электроэнергия. Может быть, вы помните цифру 70 тысяч вольт - напряжение, на котором передавалась электроэнергия в Москву со станции "Электропередача". Сейчас ЛЭП-500 - линия электропередачи напряжением 500 тысяч вольт - явление обычное, попавшее даже в песни-шлягеры ("ЛЭП"-500 - не простая линия"). Построена линия напряжением 765 тысяч вольт. Если темп роста напряжения, как говорят математики, экстраполировать на 2000 год, то получится, что напряжение, которое будет применяться в то время, будет равно 2500 тысячам вольт.
В новом строящемся высоковольтном корпусе Всесоюзного электротехнического института имени В. И. Ленина, купол которого может вместить тридцатиэтажное здание Гидропроекта, будут испытаны линии передач такого, а может быть, и более высокого напряжения.
А может быть, нужны будут напряжения... в тысячу раз меньше. Как считают лауреат Ленинской премии профессор МЭИ В. А. Веников и молодой ученый В. С. Околотин, в будущем может оказаться целесообразным передавать электроэнергию по погруженным в страшный холод сверхпроводящим линиям. А может быть, хотя и маловероятно, будут открыты сверхпроводники, работающие и при "нормальных" температурах.
Вот еще одна идея электропередачи, кажущаяся "безумной". Принадлежит она академику П. Л. Капице. Идею эту Петр Леонидович выразил в двух фразах:
"Вы думаете, энергия распространяется по проводам? Напротив, в них она только теряется!".
Идея передачи энергии в луче отнюдь не нова. Еще Роджер Бэкон, философ XIII века, выдвигал ее. Система зеркал, предлагавшаяся им, должна была бы "стоить целого войска против татар и сарацин".
Несмотря на кажущуюся парадоксальность мысли, она в большой мере правильна. Из уравнений Максвелла следует, что с увеличением частоты тока, передаваемого по проводу, ток занимает все меньшую часть проводника, вытесняясь к его краям. Для высоких радиочастот провода вообще не нужны. Энергию волн высоких частот можно передавать по трубам-волноводам, как нефть или газ. Трудности этого пути очевидны - для создания радиоволн нужно будет построить и радиолампы соответствующей мощности. Это - серьезное препятствие для развития электроники больших мощностей. Но разве не было препятствий на пути создания прочно вошедших в наш быт электроприборов?
Серьезные изменения, видимо, претерпят наши электростанции. Вполне возможно, что уже через "х" лет вместо сегодняшних котлов и турбин на электростанциях будут установлены исполинские спирали термоядерных установок.
А скоро ли это будет? Как идет "приручение" плазмы? Отвечая на вопрос, академик Л. А. Арцимович делает образное сравнение:
"...Представьте себе, что группа ученых XVIII века неожиданно увидела одноколесный велосипед. Нетрудно вообразить себе, что один из них предположил - эта машина предназначена для езды. Другой, видимо, немедленно заявил, что может математически доказать - ездить на нем нельзя. Ну, а третий - скорее всего попробовал бы проверить это экспериментально. Он сел бы на велосипед и, конечно, сразу бы упал.
Однако мы-то сейчас знаем, что есть люди, которые на одноколесном велосипеде не только ездят, но и выполняют различные трюки. Так, вот, можно считать, что мы едем на одноколесном велосипеде с завязанными глазами по канату. Такова примерно мера трудности работы с плазмой. Но, пожалуй, позволительно сказать, что в последнее время повязка с наших глаз снята. Нам ясно, что канат довольно длинный, но размер его известен".
Пожалуй, эти слова очень точно отражают положение с попытками осуществления управляемой термоядерной реакции - по сути дела, с приручением энергии водородной бомбы. Трудности на этом пути колоссальные. Чтобы плазма, раскаленная до миллионов градусов, не испепелила сосуда, в котором ее пытаются содержать, плазму, как предложили академики А. Д. Сахаров и И. Д. Тамм, нужно изолировать от стенок магнитным полем.
Вот тут-то и начинается "езда на одноколесном велосипеде по канату". Дело в том, что ни одна из предложенных до сих пор конфигураций магнитного поля не обеспечивает надежной изоляции плазмы от стенок сосуда; в магнитном поле неизбежно оказывается "течь", через которую раскаленная плазма ускользает к стенкам.
Проблеск надежды - установки ПР-5, ПР-6 и особенно "Токамак-3", созданные в институте атомной энергии им. И. В. Курчатова группой ученых под руководством члена-корреспондента АН СССР профессора Б. Б. Кадомцева. Плазма "жила" в установках уже очень долго - доли секунды.
Это большой успех. Раньше были - миллионные доля.