Читаем Приключения Алисы в Стране Головоломок полностью

— Между прочим, — продолжал он, — парадоксы, как правило, облачены в форму утверждений, а не вопросов. Так что мой парадокс — это новое слово в парадоксах, поскольку представляет собой именно вопрос, а не утверждение. Он построен на том же принципе, что и знаменитая фраза, которая доказывает собственную ложность.

— Какая фраза? — спросила Алиса.

— Это весьма известная фраза — дай-ка, я тебе ее напишу. Алиса протянула ему свой карандаш с блокнотиком. Шалтай-Болтай пролистал первые девять страничек.

— Довольно интересные вещи у тебя тут описаны, — заметил он, — вот только ты забыла пронумеровать страницы. Никогда не забывай нумеровать страницы! Иначе как ты разберешься, в каком порядке они идут?

— Но ведь странички не вырваны, — резонно заметила Алиса. — Они переплетены в блокнот, поэтому совершенно понятно, в каком порядке они расположены!

— Никогда не забывай нумеровать страницы! — настойчиво повторил Шалтай-Болтай. — Дай-ка, я их тебе сейчас пронумерую.

И он пронумеровал девять исписанных страничек и еще десятую и одиннадцатую странички, которые оставались пока чистыми. Затем написал что-то на десятой страничке и протянул блокнот Алисе. Алиса прочла:

10 —

Утверждение на странице 10 ложно

— А теперь ответь на мой вопрос, — сказал Шалтай-Болтай — истинно или ложно утверждение, написанное на десятой странице твоего блокнота?

— Затрудняюсь ответить, — сказала Алиса после некоторых раздумий, — думаю, оно может быть как истинным, так и ложным.

— Да нет же! — воскликнул Шалтай-Болтай. — Ты говоришь, оно может быть как истинным, так и ложным? А я говорю, что оно не может быть ни истинным, ни ложным!

— Как это? — поразилась Алиса.

— А вот как, девочка: можем мы предположить, что данное утверждение истинно?

— Почему нет? — пожала плечами Алиса.

— Хорошо, предположим, оно истинно. Тогда все, что в нем говорится, должно быть на самом деле. Но в этом утверждении говорится о том, что оно ложное. Значит, действительности соответствует то, что оно ложно. Следовательно, если мы предполагаем, что данное утверждение истинно, то оно должно быть ложным. Но утверждение не может сразу являться истинным и ложным! Следовательно, невозможно, чтобы данное утверждение было истинным.

— Конечно, — согласилась Алиса. — Но уж, коли это утверждение не может быть истинным, значит, оно должно быть ложным.

— И снова неправильно! — торжествующе заявил Шалтай-Болтай. — Ложным оно тоже не может быть!

— Почему не может? — спросила Алиса.

— Хорошо, предположим, оно ложно. Тогда всего, что в нем говорится, нет на самом деле. В этом утверждении говорится о том, что оно ложное. Раз всего, что говорится в утверждении, нет на самом деле, значит, утверждения о том, что оно ложное, нет на самом деле — другими словами, оно истинно. Следовательно, если мы предполагаем, что утверждение ложно, то оно истинно, а это опять противоречие! Стало быть, данное утверждение не может быть ложным. Вот так вот!

— Какая досада, — произнесла вконец расстроенная Алиса. — Я попала в ту же ловушку, что и с первой вашей головоломкой!

— Вот именно! — ответил Шалтай-Болтай, — и в этом вся прелесть!

— Вообще-то, — сказала Алиса, — мне уже приходилось слышать что-то подобное этому парадоксу. Я имею в виду историю о древнегреческом философе Эпимениде Критском, который однажды заявил: «Все критяне лжецы». Если Эпименид сказал правду, значит, он солгал, а если он солгал, значит, сказал правду. Получается парадокс.

— Никакой это не парадокс! — категорично заявил Шалтай-Болтай. — Это одно из самых частых заблуждений! Как раз тот случай, когда что-то кажется парадоксом, но по сути им не является.

— Разъясните, будьте добры! — попросила Алиса.

— Начнем с того, кого называть лжецом — того, кто лжет всегда, или того, кто лжет периодически?

— Я об этом раньше не задумывалась, — призналась Алиса. — Наверное, даже тот, кто лжет периодически, уже называется лжецом.

— Тогда здесь однозначно нет никакого парадокса, — ответил Шалтай-Болтай. — Утверждение Эпименида могло быть правдой и означало бы лишь то, что все критяне иногда лгут. В этом случае Эпименид, будучи критянином, тоже иногда лжет,

но это вовсе не означает, что лжет он и на этот раз. Никакого парадокса нет и в помине.

— Это понятно, — сказала Алиса. — Тогда мне, пожалуй, следует определить лжеца как того, кто лжет всегда. Получится ли у нас парадокс в этом случае?

—Нет, даже в этом случае парадокса не будет, — ответил Шалтай-Болтай. — Теперь мы действительно знаем, что утверждение Эпименида не может быть истинным, потому что будь оно истинно, это бы означало, что все критяне лгут всегда, не исключая и самого Эпименида, который, будучи критянином, тоже лжет всегда, следовательно, солгал и тогда, когда сделал это заявление. Так что, будь утверждение истинно, оно одновременно должно было быть ложным, что является противоречием.

— Но ведь это и есть парадокс! — воскликнула Алиса.

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика