Читаем Приключения Алисы в Стране Головоломок полностью

— Послушайте, — сказала она наконец, — нам ведь дано, что цирюльник именно такой, как описано в истории. Мы не можем опровергать заданные нам условия головоломки!

— Ах, не можем? — довольно язвительно заметил Шалтай-Болтай, — даже если так называемые заданные условия противоречат сами себе?

Для Алисы это было что-то новенькое.

— Проблема в том, — продолжал Шалтай-Болтай, — что такого цирюльника нет, никогда не было и никогда не будет. Такого цирюльника просто не может быть, потому что если бы он был, его существование противоречило бы самому себе.

Алису такое объяснение не слишком убедило.

— Ну смотри же, — досадливо поморщился Шалтай-Болтай, — допустим, я бы утверждал, что был на свете человек, рост которого шесть футов и рост которого не шесть футов — что бы ты на это сказала?

— Очевидно, что такого человека не было, — ответила Алиса.

— Хорошо! А допустим, я бы утверждал, что был на свете цирюльник, который брился и не брился — что бы ты на это сказала?

— Что такого цирюльника просто не было, — ответила Алиса.

— Но ведь это и есть цирюльник из твоей истории! Такой цирюльник не может бриться и не может не бриться. Следовательно, такого цирюльника не может быть. Вот тебе и логика!

Это окончательно убедило Алису.

— Есть одна похожая задача, которая поможет тебе лучше понять проблему с цирюльником, — продолжал Шалтай-Болтай. — В одном городке живут два цирюльника — назовем их Первый Цирюльник и Второй Цирюльник. Нам известно, что Первый Цирюльник бреет всех жителей городка, которые не бреются сами, но ничего не сказано о том, что он не бреет и других жителей тоже. Что до Второго Цирюльника, то он никогда не бреет жителей, которые бреются сами, но вовсе необязательно, что он бреет всех жителей, которые не бреются сами. При таких условиях мы вполне можем допустить существование и Первого Цирюльника, и Второго Цирюльника и никакого противоречия здесь не будет.

— Тогда в чем тут загвоздка? — спросила Алиса.

— А загвоздки тут две: бреется Первый Цирюльник сам или не бреется? И вторая: бреется Второй Цирюльник сам или не бреется?

Алиса погрузилась в размышления.

— Первый Цирюльник бреется сам, а Второй Цирюльник — нет, — заявила Алиса, весьма гордая собой.

— Хорошо! Очень хорошо! — вскричал Шалтай-Болтай. — А можешь объяснить, почему?

— Потому что, — уверенно заговорила Алиса, — если бы Первый Цирюльник не брился сам, то он был бы одним из тех, кто сам не бреется, но раз он всех таких людей бреет, то должен брить и себя. Это противоречие. Следовательно, он бреется. Что касается Второго Цирюльника, то если предположить, что он бреется, то ему пришлось бы брить кого-то, кто бреется сам, а по условиям задачи он этого никогда не делает. Следовательно, Второй Цирюльник не может бриться.

— Мои уроки не проходят для тебя даром, — удовлетворенно заметил Шалтай-Болтай. — Должен сказать, что тебе невероятно повезло с учителем!

Алиса даже не знала, как на это реагировать. Уроки логического мышления, которые преподнес ей Шалтай-Болтай, и вправду оказались чрезвычайно поучительны. Но при этом, подумала Алиса, он вовсе не прочь слегка прихвастнуть при каждом удобном случае!

— Вы сказали, это поможет лучше понять старую головоломку про цирюльника, — напомнила Алиса. — Какая связь между этими двумя головоломками?

— Молодец, что спросила, — ответил Шалтай-Болтай. — Видишь ли, может существовать цирюльник вроде Первого Цирюльника, и такой цирюльник должен бриться сам. Вполне мог бы быть на свете и цирюльник вроде Второго Цирюльника, только вот бриться такой цирюльник не мог. Но Первый Цирюльник и Второй Цирюльник не могут быть одним человеком! Тогда как в первоначальной головоломке у тебя был только один цирюльник, который сочетал в себе характеристики Первого Цирюльника и Второго Цирюльника, а это невозможно.

— Я поняла! — сказала Алиса, — это очень интересно!

— Вот тебе еще одна головоломка, — сказал Шалтай-Болтай, —только у этой есть совершенно определенный ответ. Ты знаешь задачку про «Клуб Сердец»?

— Нет, — ответила Алиса, — никогда раньше не слышала.

— Молодец, — неожиданно похвалил он, — ты правильно ответила на вопрос!

— На какой вопрос? — недоуменно спросила Алиса.

— Вопрос, который я тебе задал! Я спросил тебя, знаешь ли ты головоломку про «Клуб Сердец», и ты сказала, что никогда ее раньше не слышала. Так вот ты была права!

— Ну да, — сказала Алиса, — конечно, я была права, вот только откуда вы могли это знать?

— Оттуда, что я сам придумал эту головоломку и еще никому никогда ее не рассказывал, поэтому я точно знал, что ты права!

— А-а! — только и сказала на это Алиса. — Так что это за головоломка про «Клуб Сердец»?

— Жители одного городка, — начал Шалтай-Болтай, — объединились в различные клубы по интересам. Один из таких клубов называется «Клуб Сердец». Нам известны следующие факты:

1. Каждая женщина в городке, если только она не состоит членом всех клубов, является членом «Клуба Сердец».

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика