Читаем Приключения Алисы в Стране Головоломок полностью

Сначала Алиса решила, что он просто непоследователен в своих высказываниях, но ей ни разу не удалось поймать его на очевидной непоследовательности. Ни разу Алиса не слышала, чтобы он сначала объявил какое-то суждение истинным, а потом его же объявил ложным, притом, что он вполне мог заявить, что одно и то же суждение одновременно является истинным и ложным! Но как она ни старалась, ей ни разу не удалось добиться от него отдельных заявлений об истинности и ложности одного и того же суждения.

В течение нескольких часов Алиса буквально засыпала его вопросами и в конце концов собрала огромный объем информации, которую старательно записала в свой блокнот. Затем она отправилась со всем этим к Шалтаю-Болтаю, надеясь, что тот поможет ей как-то в этом разобраться.

— Что ж, все логично, — прокомментировал Шалтай-Болтай Алисины записи, — вполне логично!

— Что вы хотите этим сказать? — спросила Алиса. — Этот Белый Рыцарь — лжец?

— Белые Рыцари никогда не лгут, — возразил Шалтай-Болтай.

— Тогда я ничего не понимаю, — сдалась Алиса. — Абсолютно ничего!

— Ну, разумеется, — презрительно фыркнул Шалтай-Болтай, — ты ведь не владеешь зазеркальной логикой!

— Что это, зазеркальная логика?

— Это такая логика, которой пользуются зазеркальные логики, — ответил он.

— А кто такие зазеркальные логики? — спросила Алиса.

— Как кто? Те, кто пользуются зазеркальной логикой, — ответил Шалтай-Болтай. — Неужели нельзя было самой догадаться?

Алиса задумалась. Почему-то это объяснение ей не слишком помогло.

— Дело в том, — продолжал Шалтай-Болтай, — что в наших краях есть те, кого называют зазеркальными логиками. Их высказывания кажутся довольно странными, но это если не знать ключа — а ключ довольно прост. Как только будешь знать ключ, все сразу встанет на свои места.

— А что это за ключ? — Алиса буквально сгорала от любопытства.

— Так я тебе сразу и раскрыл ключ! Вместо этого я дам тебе несколько подсказок. На самом деле, я скажу тебе пять основных условий, которым должен отвечать любой зазер-кальный логик. Из этих условий ты сможешь вывести ключ. Вот они:

Условие первое. Зазеркальный логик кристально честен. Он будет утверждать только лишь и исключительно то, в чем сам убежден.

Условие второе. Всякий раз, утверждая, что то или иное суждение истинно, зазеркальный логик одновременно утверждает, что сам он не убежден в истинности этого суждения.

— Минуточку, — прервала его Алиса. — А вы не противоречите самому себе? Ведь согласно первому условию зазеркальный логик всегда честен. Раз это так, то если он утверждает, что суждение истинно, он должен быть сам убежден в его истинности. Как же иначе, не солгав, может он утверждать, что не убежден в истинности этого суждения?

— Хороший вопрос, — ответил Шалтай-Болтай. — Однако прошу заметить, что я никогда не говорил, что зазеркальный логик всегда точен в своих высказываниях! Если он в чем-то убежден, это вовсе не означает, что он знает, что он в этом убежден, и это даже не означает, что он обязательно убежден в том, что он в этом убежден. Более того, вполне может случиться так, что он ошибочно убежден в том, что он в этом не убежден.

— Вы хотите сказать, — изумилась Алиса, — что кто-то может быть в чем-то убежден, и при этом быть убежденным в том, что он в этом не убежден?

— Если это зазеркальный логик, то запросто, — ответил Шалтай-Болтай, — на самом деле у зазеркальных логиков это самое обычное дело, ведь это прямое следствие первых двух условий.

— Как это? — спросила Алиса.

— А вот как, — ответил Шалтай-Болтай. — Предположим, он убежден в истинности суждения. Тогда, согласно первому условию, он заявляет, что суждение истинно. Согласно же второму условию, он заявляет, что не убежден в истинности суждения. Отсюда следует, опять-таки согласно первому условию, что он должен быть убежден в том, что он не убежден в истинности суждения.

— Впрочем, — заметил Шалтай-Болтай, — я даю тебе слишком много подсказок! Позволь мне закончить список условий, чтобы ты смогла вывести ключ ко всей загадке.

Третье условие. В отношении любого истинного суждения, он (зазеркальный логик) всегда утверждает, что убежден в истинности этого суждения.

Четвертое условие. Если зазеркальный логик в чем-то убежден, он не может быть одновременно убежден в обратном.

Пятое условие. В отношении любого суждения, зазеркальный логик либо убежден в истинности этого суждения, либо убежден в истинности противоположного ему суждения.

— Итак, — довольно высокопарно произнес Шалтай-Болтай, — я снабдил тебя полным списком условий. Исходя из них, ты должна быть способна логически вывести, какие суждения зазеркальный логик считает истинными, а какие суждения он считает ложными. А теперь, чтобы убедиться, что ты все поняла, я задам тебе несколько наводящих вопросов.

Вопрос первый. Предположим, зазеркальный логик считает, что Черный Король спит. Считает ли он, что ты снишься Черному Королю, или он так не считает?

— Да откуда же я могу об этом знать? — вскричала Алиса.

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика