Читаем Приключения Алисы в Стране Головоломок полностью

— Без проблем, — ответил он. — Возьмем любое суждение, в истинности которого зазеркальный логик убежден. Поскольку он убежден в истинности этого суждения, он будет его утверждать (согласно первому условию), следовательно, он также будет утверждать, что не убежден в его истинности (согласно второму условию), следовательно, он убежден в том, что он в нем не убежден (согласно первому условию).

— Да, да, — закивала Алиса, — теперь я вспомнила!

— Чтобы больше не забывать, запиши эту мысль в свой блокнот и обозначь ее как Утверждение 1.

Алиса записала следующее:

«Утверждение 1. Когда зазеркальный логик в чем-то убежден, он также убежден в том, что он в этом не убежден».

— Дальше важно понимать, — продолжал Шалтай-Болтай, — что в отношении любого истинного суждения, зазеркальный логик убежден в том, что он убежден в истинности этого суждения.

— Почему так? — спросила Алиса.

— Это же элементарно! — ответил Шалтай-Болтай. — Возьми любое истинное суждение. Согласно третьему условию, он утверждает, что убежден в истинности этого суждения. Раз он это утверждает, и он честен (первое условие), значит, он убежден в том, что он в нем убежден.

— Понятно, — кивнула Алиса.

— Ты лучше это запиши, и обозначь, как Утверждение 2, — посоветовал Шалтай-Болтай.

И Алиса записала следующее:

«Утверждение 2. В отношении любого истинного суждения, зазеркальный логик убежден в том, что он убежден в истинности этого суждения».

— А теперь, — продолжал Шалтай-Болтай, — ты понимаешь, почему абсолютно невозможно, чтобы зазеркальный логик был убежден в истинности истинного суждения?

— Не очень, — призналась Алиса.

— Это очевидно следует из Утверждения 1, Утверждения 2 и четвертого условия, — ответил он. — Возьми любое суждение, в истинности которого зазеркальный логик убежден. Согласно Утверждению 1, он убежден в том, что он не убежден в истинности этого суждения. При этом он не может одновременно быть убежден в том, что он убежден в ис-

тинности суждения (потому что, согласно четвертому условию, он не может быть убежден в чем-то и одновременно быть убежден в обратном). Так как он не убежден в том, что он в нем убежден, тогда это суждение не может быть истинным, ведь будь оно истинно, тогда, согласно Утверждению 2, он должен был бы быть убежден в том, что он убежден в истинности этого суждения. Но он не убежден в том, что он в нем убежден — и поэтому оно не может быть истинным. Таким образом, мы видим, что зазеркальный логик никогда не бывает убежден ни в одном истинном суждении; все суждения, в которых зазеркальный логик убежден — ложны.

Алисе понадобилось определенное время, чтобы усвоить сказанное.

— Это довольно сложное доказательство! — заметила она, наконец.

— Ничего, скоро освоишься! Алиса снова задумалась.

— А скажите мне вот что, — попросила она. — Зазеркальный логик должен быть убежден во всех ложных суждениях? Или же он просто убежден только в ложных суждениях?

— Это хороший вопрос, девочка, — ответил Шалтай-Болтай, — и ответ на него — «да». Возьми любое ложное суждение. Согласно пятому условию, он убежден либо в истинности этого суждения, либо в истинности противоположного ему суждения. Но он не может быть убежден в противоположном суждении, потому что противоположное суждение истинно! Соответственно, он убежден в истинности ложного суждения.

— Невероятно! — воскликнула Алиса. — Значит, зазеркальный логик убежден в истинности всех ложных суждений и не верит ни одному истинному суждению!

— Точно, — подтвердил Шалтай-Болтай, — и в этом вся прелесть!

— Еще один интересный момент, — добавил Шалтай-Болтай, — заключается в том, что любой, кто верит всем ложным суждениям и не верит ни одному истинному суждению и кто честно высказывает свои убеждения — любой такой человек должен соответствовать пяти основным условиям, характеризующим зазеркального логика.

— Это почему же? — спросила Алиса.

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика