Читаем Приключения Алисы в Стране Головоломок полностью

46. Кто Мердок?

Раз А заявляет, что он шпион, то он либо жулик, либо шпион. В также заявляет, что он — шпион, поэтому и он должен быть либо жуликом, либо шпионом. Таким образом, один из них (А или В) жулик, а другой — шпион. Следовательно, Б — рыцарь и тогда его заявление верно, и шпион — это А.

47. Возвращение Мердока

Если Мердок — это А, то все три заявления правдивы, что невозможно, ведь один из подсудимых жулик, который всегда лжет. Если Мердок — это В, то все три заявления лживы, что также невозможно, ведь один из них рыцарь, а рыцари всегда говорят правду. Следовательно, шпионом по имени Мердок должен быть Б.

48. Дело посложнее

Если бы мы не знали, что после заявления В судья тут же обличил шпиона, мы не смогли бы решить задачу. Но мы знаем, что судья смог вынести приговор, и это ключ к отгадке!

Предположим, что В обвинил А. В этом случае судья не смог бы вынести приговор, потому что могло быть, что А — шпион, Б — жулик, В — рыцарь, либо Б — шпион, А — рыцарь, В — жулик, либо В — шпион, А — жулик, Б — рыцарь. Так что, укажи В на А, судья не смог бы разоблачить шпиона.

А если бы В указал на Б? В этом случае А и В оба указали бы на Б. Тогда их обвинения либо оба правдивы, либо оба ложны. Будь их показания правдивыми, Б действительно был бы шпионом, а раз оба обвинения правдивы, то А и В оба должны были бы быть рыцарями (ни один из них не мог бы быть шпионом, ведь шпион — Б). Но они не могут оба быть рыцарями. Следовательно, их обвинения были ложны и это значит, что Б не шпион. Может ли А быть шпионом? Нет, потому что будь А шпионом, то Б и В оба бы солгали, обвиняя друг друга, что невозможно, ведь тогда оба они должны были быть жуликами. Поэтому шпионом может быть только В (тогда Б, справедливо обвинивший В, — рыцарь, а А, ложно обвинивший Б, — жулик).

Проще говоря, если бы В обвинил А, то судья не смог бы вынести приговор, но если бы В обвинил Б, то судья понял бы, что именно В и есть шпион. Раз судья это понял, то, действительно, В обвинил Б, и на основании этого судья вынес В приговор.

49. Еще более сложное дело

Мы не знаем, что ответили А и Б. Рассмотрим четыре возможных случая:

Случай 1. А и Б оба ответили «да»; Случай 2. А ответил «нет», Б ответил «да»; Случай 3. А ответил «да», Б ответил «нет»; Случай 4. Оба ответили «нет».

Эти случаи пригодятся нам при решении следующих двух задач, поэтому мы остановимся на них подробнее.

Случай 1. Оба ответила «да»: поскольку А заявил, что он и есть шпион, то он либо жулик, либо шпион (точно не рыцарь, потому что рыцарь никогда не назвался бы шпионом). Если А жулик, то он солгал, соответственно и Б солгал, подтвердив, что А сказал правду. Значит Б не рыцарь, и раз А жулик, то Б — шпион. Тогда В должен быть рыцарем. Итак, если А жулик, то Б шпион, а В — рыцарь.

Предположим теперь, что А — шпион. В этом случае он дал правдивый ответ, и Б дал правдивый ответ, подтвердив, что А сказал правду. Тогда Б должен быть рыцарем, а В — жуликом. Итак, если А — шпион, то Б — рыцарь, а В — жулик. Давайте запишем эти два варианта (назовем их 1а и 1б) Случая 1.

АБВ
laЖуликШпионРыцарь
16ШпионРыцарьЖулик

Случай 2. А ответил «нет», Б ответил «да»: поскольку А отрицал, что он шпион, то он либо рыцарь, либо шпион (жулик солгал бы, сказав, что он шпион). Если А рыцарь, то он сказал правду, и тогда Б тоже сказал правду, подтвердив правдивость показаний А. В этом случае Б не может быть жуликом, он должен быть шпионом. Тогда В — жулик.

Если А шпион, то он солгал, и тогда Б тоже солгал, подтвердив правдивость показаний А, значит Б — жулик. В в таком случае — рыцарь. Итак, в Случае 2 также возможны 2 варианта.

АБВ
РыцарьШпионЖулик
26ШпионЖуликРыцарь

Случай 3. А ответил «да», Б ответил «нет». Поскольку А признался, что он шпион, то (как и в Случае 1) А либо жулик, либо шпион. Если он жулик, то он солгал, и тогда Б сказал правду, и он либо рыцарь (а В шпион), либо шпион (тогда В рыцарь). Если А шпион, то он сказал правду, а Б солгал, что означает, что Б жулик, а В рыцарь. Таким образом, получаем три варианта.

АБВ
ЗаЖуликРыцарьШпион
36ЖуликШпионРыцарь
ЗвШпионЖуликРыцарь

Случай 4. Оба ответили «нет». Поскольку А отрицал, что он шпион, тогда (как и в Случае 2) он либо рыцарь, либо шпион. Предположим, он рыцарь. Тогда он сказал правду, а

Б солгал. И в этом случае Б либо жулик (а В шпион), либо шпион (а В жулик). Предположим, А шпион. Тогда он сказал правду, и Б сказал правду, что означает, что Б — рыцарь (а В жулик). У нас снова три варианта:

АБВ
РыцарьЖуликШпион
46РыцарьШпионЖулик
ШпионРыцарьЖулик

Для удобства предлагаю изложить все четыре случая в одной таблице:

Случай 1. Оба ответила «да»

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика