Читаем Приключения Алисы в Стране Головоломок полностью

Черный Король либо бодрствовал, либо спал в это время. Предположим, он бодрствовал. Тогда его суждение было верным и это значит, что Черная Королева спала. Раз она спала, то ее суждение было ошибочным, следовательно, она должна была полагать, что Король спит. Предположим теперь, что Король в это время спал. Тогда его суждение было ошибочным, а значит, Королева бодрствовала. Раз она бодрствовала, то все ее суждения были верными, в том числе и о том, что Король спит. Итак, мы видим, что независимо от того, спал ли Король в это время или бодрствовал, Королева полагала, что он спит.

57. Задача о погремушках

Если Траляля проиграет пари, у него останется ровно половина от общего числа погремушек (т.е. столько же погре-

мушек, сколько у Труляля, как сформулировано в условиях задачи). Значит, сейчас у него на одну погремушку больше, чем половина от всех погремушек. Если же Траляля выиграет пари, то у него будет на две погремушки больше, чем половина от всех погремушек. Кроме того, в этом случае у него окажется 2/3 от общего числа погремушек (или вдвое больше погремушек, чем у Труляля, как сформулировано в условиях задачи), что на 1/6 от общего числа погремушек больше, чем половина от общего числа погремушек (поскольку 1/2—1/3 = 1/6). Следовательно, «на 1/6 от общего числа погремушек больше, чем половина от общего числа погремушек» — это то же самое, что «на две погремушки больше, чем половина от всех погремушек», поэтому две погремушки и есть 1/6 от общего числа погремушек. Следовательно, всего у братьев 12 погремушек, из которых у Траляля 7 погремушек, а у Труляля — 5.

Давайте проверим: если Траляля проиграет пари, у каждого из братьев окажется по 6 погремушек. Если же Траляля выиграет, то у него будет 8, а у его братца только 4 погремушки, то есть у Траляля будет в два раза больше погремушек, чем у Труляля.

58. Братья и сестры

В семье четыре мальчика и три девочки. У Тони три брата и три сестры, у Алисы четыре брата и две сестры.

59. Кому письмо?

Если Королева три письма разложила правильно, то как раз остается одно письмо. Поэтому нам нужно сделать выбор между двумя вариантами: либо она три письма разложила правильно, либо только два. Но ведь если она три письма разложила правильно, значит, и четвертое письмо должно было попасть в предназначенный для него конверт! Следовательно, Королева разложила правильно два письма.

60. Сколько земли у фермера?

Часто на этот вопрос дают неправильный ответ — 11 акров. Если бы у фермера и в самом деле было 11 акров земли, сборщик налогов отобрал бы у него 1 1/10 акров (то есть 1/10 от 11 акров). В этом случае у фермера осталось бы 9 9/10 акров, а вовсе не 10. Поэтому 11 акров не может быть правильным ответом.

Как же найти правильный ответ? Давайте подойдем к решению задачи следующим образом: после того как у фермера отобрали 1/10 надела, у него осталось 9/10. Следовательно, 9/10 от первоначального надела и есть 10 акров. Это означает, что если мы умножим число акров в первоначальном наделе на 9/10, мы получим тот надел, который остался после конфискации части земли — то есть 10 акров. Следовательно, чтобы «вернуться« от оставшегося надела к первоначальному, мы должны поделить на 9/10! Чтобы поделить на 9/10, нужно умножить на 10/9, поэтому мы умножаем 10 на 10/9 и получаем 100/9, или 11 1/9 акров.

Можно ли проверить этот результат? Давайте посмотрим: площадь первоначального надела составляла 11 1/9 акров. 1/10 от 11 1/9 — это 1 1/9, и если мы отнимем 1 1/9 от 11 1/9, мы получим ровно 10 акров.

61. Еще один фермер

Эту задачу можно решить, приведя все дроби к общему знаменателю (равному 60): 1/3 + 1/4 + 1/5 = 20/60 + 15/60 + 12/60 = 47/60. На возделывание кукурузы таким образом остается 13/60 всей площади участка. Следовательно, 13/60 и составляют 26 акров, и раз 13 это половина от 26, то 60 должно быть половиной от общей площади в акрах. Значит, общая площадь участка составляет 120 акров.

Давайте проверим: 1/3 от 120 акров это 40 акров, на которых фермер выращивал кабачки. 1/4 от 120 это 30 акров, на которых произрастал горох, и 1/5 от 120 это 24 акров, на которых росли бобы. Произведем сложение: 40 + 30 + 24 = 94. 120 — 94 = 26 акров, отведенных под кукурузу.

62. Когда часы двенадцать бьют

Между первым и шестым ударами пять временных интервалов, и эти пять интервалов помещаются в 30 секунд. Значит интервал между любым двумя следующими друг за другом ударами составляет шесть секунд (а не пять, как ошибочно полагают некоторые!). Далее, между первым и двенадцатым ударами — одиннадцать интервалов времени. Следовательно, двенадцать ударов дедушкины часы отбивают за 66 секунд.

63. Двенадцатый вопрос

Предположим, Алиса ответила бы «да». В этом случае Королева могла бы поступить, как ей заблагорассудится: либо

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика