Читаем Приключения Алисы в Стране Головоломок полностью

На обратной стороне таблички нарисован либо квадрат, либо круг. Предположим, это квадрат. Тогда квадрат означает «да», а круг означает «нет». В этом случае второй братец ответил на вопрос «нет», и значит, он солгал! Предположим теперь, что на обратной стороне нарисован круг. Тогда круг означает «да», и второй братец ответил «да», но это снова ложь, ведь на обратной стороне вовсе не квадрат! Следовательно, второй братец солгал, поэтому его зовут Труляля.

77. О чем должна спросить Алиса?

Можно придумать множество вопросов, которые помогут Алисе получить приз. На мой взгляд, самый простой из них звучит так: «Ваша карта красной масти?»

Какой бы знак не был дан в качестве ответа, он должен означать «да»: тот, у кого красная карта, правдиво в этом признается, а тот, у кого черная карта, солжет, что его карта красной масти. Итак, ответ второго братца был «да». Предположим, что он нарисовал в воздухе квадрат. Тогда его квадрат означал «да», и приз находится у него. Если же в ответ он прочертил в воздухе круг, то его круг означал «да», а квадрат — «нет» и приз не у него.

Вкратце, если братец нарисовал квадрат, приз у него. Если он нарисовал круг, приз находится у другого братца.

Глава 9

Для всех решений в этой главе назовем первого подсудимого А, второго — Б и третьего — В.

78. Кто виновен?

Нам дано, что солгал тот, кто был виновен. Если бы это был Б, он сказал бы правду, признав свою вину, поэтому Б не может быть виновным. Если бы виновным был А, то все трое солгали бы (потому что А обвинил бы Б или В, которые оба невиновны; Б обвинил бы самого себя, невиновного; и В обвинил бы или самого себя, невиновного, или Б, который тоже невиновен). Но нам ведь известно из условий задачи, что не все трое солгали, поэтому и А не может быть виновным. Таким образом, виновным является подсудимый В.

79. Второй судебный отчет

Что же такого мог сообщить Рыцарь Белому Королю, что позволило тому обнаружить виновного? Если бы Королю было сказано, что все трое солгали, ему никогда не удалось бы разобраться, кто из подсудимых виновен, потому что возможно, что виновен был А, а вину возложил на Б, а Б и В обвинили друг друга (и все трое солгали). Могло быть и такое, что Б был виновен и обвинил В, а А и В обвинили друг друга

(и снова все трое солгали). Могло быть и так, что В был виновен и при этом возложил вину на А, а А и Б обвинили друг друга. Поэтому Белому Королю сказали что угодно, но только не то, что все трое подсудимых солгали.

Мог бы Король решить задачу, если бы ему сказали, что ровно двое подсудимых солгали, и если бы он знал, кто именно? Нет, и вот почему. Предположим, к примеру, что ему сообщили, что А сказал правду, а Б и В оба солгали. Тогда, на кого бы А ни указал, это и был бы виновный (ведь А сказал правду). Так, А мог указать на Б (и в этом случае Б был бы виновным), при этом Б и В оба солгали, обвинив А (а может Б обвинил В, а В обвинил А). Могло быть и так, что А обвинил В, а Б и В оба обвинили А, и в этом случае виновным оказался бы В. Следовательно, если бы А был тем единственным, кто дал правдивые показания, то либо Б, либо В мог быть виновен. Подобным образом, если Б был единственным давшим правдивые показания, то виновными могли быть либо А, либо В, а если бы таким правдолюбивым обвиняемым оказался В, то виновным могли быть как А, так и Б. Итак, если Белому Королю было сказано, что тем единственным обвиняемым, который сказал правду, был А, или Б, или В, Король никогда бы не узнал, кто же виновен на самом деле. Отсюда вывод, что ничего такого Рыцарь ему не сообщил.

Мог ли Рыцарь сообщить Королю, что все трое сказали правду? Нет, и это невозможно, ведь виновный подсудимый несомненно солгал, возложив свою вину на одного из двух других обвиняемых, которые оба были невиновны.

Остается единственный случай: только один из обвиняемых солгал. Если это так, то солгал именно тот, кто виновен, потому что, если бы солгал невиновный, у нас получилось бы уже два лжеца — он сам и виновный, не признавший свою вину. Следовательно, Белый Король узнал одно из трех.

Случай 1. А солгал, Б сказал правду, В сказал правду.

Случай 2. А сказал правду, Б солгал, В сказал правду.

Случай 3. А сказал правду, Б сказал правду, В солгал.

Теперь мы видим, каким образом Белый Король вычислил виновного, но как мы можем вычислить виновного, ведь нам неизвестно, какой из этих трех случаев Рыцарь описал Королю? Здесь нам пригодится информация о Шалтае-Болтае. Итак, Шалтай-Болтай либо спросил Рыцаря, были ли ложны любые два показания подряд, либо были ли правдивы любые два показания подряд. Первый вопрос ни к чему

Перейти на страницу:

Все книги серии Твой кругозор

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика