Второй вехой стала работа Геделя, которую в недавнем времени сделали более специфичной результаты Пола Коэна. Гедель, математический логик из Принстонского института перспективных исследований, установил, что любая конечная система аксиом или даже счетно бесконечная их система в математике позволяет сформулировать внутри этой системы имеющие смысл утверждения, которые являются неразрешимыми — то есть внутри системы нельзя ни доказать, ни опровергнуть их истинность. Коэн открыл целый класс новых аксиом бесконечности. Сегодня существует масса результатов, свидетельствующих о том, что наша интуиция, благодаря которой мы понимаем бесконечность, не обладает полнотой. Они позволяют раскрыть таинственные области нашей интуиции для понимания разных концепций бесконечности. Это, в свою очередь, оказывает косвенное влияние на изменение философии математического фундамента, показывая, что математика — это вовсе не законченный предмет, основанный на неизменных, уникальным образом подобранных законах, как было принято считать раньше, а генетически развивающаяся наука. Эту точку зрения еще не приняли сознательно, а ведь она указывает путь к иным перспективам. Математики изучают бесконечность воистину плодотворно, так что можно ли знать, как изменится наше отношение к этому понятию за следующие пятьдесят лет?
Конечно, что-то появится — если не аксиомы в настоящем смысле этого слова, то правила или договоренности между математиками, которые допустят новые постулаты или, назовем их лучше, формулированными пожеланиями, выражающими абсолютную свободу мысли, свободу конструкции, когда есть неразрешимые утверждения в предпочтение верным или ложным допущениям. Некоторые утверждения могут в самом деле быть неразрешимо неразрешенными. Это должно представлять огромный философский интерес.
Интерес к фундаментальным основам математики в какой-то степени философский, однако в конечном итоге он распространяется на всю математику, как и теория множеств. Однако если выражение «фундаментальные основы» — термин неудачный, в настоящее время это всего лишь еще один математический предмет, но, безусловно, фундаментальный.
Огромная дихотомия в происхождении и вдохновении математической мысли — которую стимулируют с одной стороны влияние внешней реальности, материального мира, а с другой стороны воздействие развивающегося процесса психологии, очень вероятно, что человеческого мозга — имеет небольшой и особый гомоморфический образ в настоящем и будущем применении электронных компьютеров.
Даже самый идеалистический взгляд на математику как на «чистое» создание единственно человеческого ума должен согласовываться с тем фактом, что выбор определений и аксиом геометрии — а фактически, и большинства математических концепций — это результат впечатлений, полученных посредством наших чувств от внешних раздражителей и, что неотъемлемо, от наблюдений и экспериментов во «внешнем мире». Теория вероятностей, например, появилась как результат развития нескольких вопросов, связанных с азартными играми. Сегодня вычислительные машины, предназначенные для решения специальных задач математики, позволяют надеяться на очень мощное увеличение масштаба Gedanken экспериментов[38]
, идеализацию опыта и наших более абстрактных схем мышления. Судя по всему, экспериментирование с моделями игр, в которых участвует самоорганизованная живая материя через посредничество химических реакций, протекающих в живых организмах, приведет к новым абстрактным математическим схемам. Новые математические структуры могли бы возникнуть и в результате нового изучения математики эволюционирующих моделей и возможности экспериментального изучения на вычислительных машинах процесса конкуренции или состязаний между геометрическими конфигурациями, имитирующими борьбу за выживание. Здесь можно было бы применить выражение вроде «payzonomy» к комбинаторике конкурирующих реакций и «auxology» к еще только развивающейся теории роста самоорганизации, которая в конечном итоге включает и растущее дерево самой математики[39].До сих пор для отображения математических свойств геометрической эволюции предлагались только очень простые и недоработанные математические схемы (мои собственные незамысловатые модели представлены в недавно вышедшей книге «Теория клеточных автоматов» («А Theory of Cellular Automata») под редакцией Артура Беркса, изданной издательским домом Иллинойского университета).
Особенно оригинальный набор правил придумал английский математик Джон Конвей, специалист по теории чисел. Его «Игра Жизни» является примером развлечения или игры, очень похожей на ранние задачи с элементами игры в карты или кости, которая в итоге подвела к современному строению теории вероятностей и, возможно, подведет к новой большой теории, описывающей «процессы», которые изучал в своей философии Альфред Норт Уайтхед.