В любой деятельности, будь то наука или какое другое занятие, он демонстрировал своеобразную смесь юмора — не совсем логичного и какого-то чудного — в отношении общепринятых позиций. К примеру, если мы играли в теннис и он проигрывал четыре игры из шести, то он обыкновенно говорил: «Это не в счет, потому что данная разность меньше квадратного корня из суммарного количества партий» (мера чисто случайных флуктуаций в статистике).
Ему нравилось участвовать в политических дискуссиях и делать несерьезные попытки предсказания будущего. Бывало, он просил членов группы написать о том, что, по их мнению, должно произойти, и запечатывал записки в конверт с тем, чтобы вскрыть его пару месяцев спустя. В целом же он был настроен весьма пессимистично в отношении отдаленных перспектив в политике, придя к выводу, что человечество все еще не поумнело и когда-нибудь уничтожит себя собственными руками.
Он также мог быть большим задирой. До сих пор у меня на памяти итальянские флексии, которые он употреблял, когда подтрунивал над Теллером, выдавая что-нибудь вроде: «Эдвард-а-а, а как так случилось-a, что венгры еще ничего не-а-а изобрели?» Однажды Сегре, который обожал порыбачить по выходным в ручьях Лос-Аламосских гор, пустился в рассуждения о тонкостях искусства рыболовства и сказал, что поймать форель не так-то легко. Энрико, который не был рыболовом, ответил ему с улыбкой: «О, Эмилио, я понимаю, это настоящий интеллектуальный поединок».
Беседуя с друзьями о личных качествах других, он стремился быть совершенно беспристрастным и объективным, лишь изредка позволяя себе открыто выразить личные или субъективные мнения или дать выход своим чувствам. В отношении же самого себя он проявлял потрясающую самонадеянность. Он знал о дарованном ему величайшем природном уме, которым он мог пользоваться, причем очень удачно, о своей невероятной математической технике и знании физики.
Энрико обожал ходить пешком, несколько раз мы проходили весь путь от Лос-Аламоса до памятника Бандельера, двигаясь вдоль стен каньона и реки. Это была прогулка длиной в семь или восемь миль, во время которой нам приходилось переправляться через реку больше тридцати раз. Она продолжалась несколько часов, и мы успевали поговорить на множество тем.
Стоит упомянуть здесь об одной из свойственных мне особенностей: я терпеть не могу подниматься в гору. И я действительно не знаю, почему. Некоторые говорят мне, что из-за своего нетерпения я склонен к быстрой ходьбе и по этой причине начинаю испытывать одышку. Вообще-то, я не против того, чтобы идти по ровной поверхности, и получаю истинное удовольствие, когда иду под гору. Несколько лет назад я купил немецкий путеводитель под названием «Сто прогулок под гору в Альпах». Трудно придумать более забавное название.
Во время одной из таких «прогулок под гору» в каньоне Фриджолес, уже после войны, я рассказал Ферми, как в последнем классе средней школы я увлекался чтением популярных статей о работе Гейзенберга, Шредингера и де Бройля по новой квантовой теории. Я узнал, что решение уравнения Шредингера обеспечивает точность до шести знаков при определении энергетических уровней атома водорода. Мне стало интересно, как такое искусственно абстрактное уравнение может давать результаты с точностью выше одной миллионной. Дифференциальное уравнение в частных производных имело сомнительное происхождение, как мне казалось, несмотря на появление примеров аналогичного дифференцирования. Я рассказал об этом Ферми, и он тут же ответил мне: «Знаешь, Стэн, вообще-то нет никаких оснований считать его [уравнение Шредингера] состоятельным».
Затем он сказал о том, что собирается дать логичное представление и вывод квантовой теории в своем собственном курсе лекций осенью в Чикагском университете. И он, судя по всему, работал над этим, однако летом, вернувшись в Лос-Аламос, он сказал мне: «Нет, мне не удалось осуществить действительно рациональное представление квантовой теории, такое, что удовлетворило бы меня». Ведь это не просто вопрос аксиом, как могли бы подумать наивные пуристы. Вопрос в том, почему эта аксиома, а не другая? Аксиоматизировать можно любой рабочий алгоритм. Задача состоит в том, чтобы ввести, обосновать, связать или упростить аксиомы, исторически или концептуально, и экспериментально установить их фундаментальность.