В целях решения вышеуказанных проблем в ходе проведения авторских научных исследований был разработан новый способ борьбы с техногенными отходами на основе принципа обогащения минерального сырья, который был запатентован в Российской Федерации [17]. Устройство для осуществления указанного способа использует адаптивные компьютерные программы и алгоритмы нейронных сетей, также является частью патента [17]. Авторами патента были поставлены и решены следующие основные задачи:
–
разработано устройство для обогащения минерального сырья, простого по конструкции и эксплуатации, не предъявляющего жестких требований к чистоте воды;
–
реализована возможность применения программных алгоритмов оценки загрязнения воды;
–
использована теоретическая возможность применения искусственного интеллекта для оценки содержания химических элементов и плотности полезного компонента в водной смеси;
–
доказана высокая эффективность за счет непрерывной работы устройства, поскольку не требуется временных и трудовых затрат на сбор и эвакуацию полезного компонента;
–
осуществлено существенное снижение металло
– и материалоемкости;
–
минимизированы временные и трудовые затраты на монтаж и демонтаж оборудования, что повышает мобильность используемого оборудования общую экономическую эффективность функционирования устройства.
В ходе проведенного эксперимента решался ряд дополнительных задач, таких как:
–
систематизация современных технологий и принципов работы имеющихся устройств по обогащению минерального сырья;
–
изучение требований подготовки минерального сырья и его транспортировки к устройствам по его обогащению;
–
обобщение мирового опыта по обогащению минерального сырья;
–
анализ негативных последствий, присущих технологиям и устройствам по обогащению минерального сырья, устранение которых может потребовать существенных изменений конструкции обогатительной установки;
–
анализ специфики образования месторождений полезных ископаемых (драгоценных металлов, аллювиальных россыпей), а также гидрографии рек;
–
изучение особенностей течения двухфазных потоков, а также образования меандров на реках.
В рамках проведенного автором теоретического исследования и практического эксперимента, результатами которых стала разработка устройства для обогащения минерального сырья [17], также изучалась работа гидротранспорта, принципы проведения гидравлических расчетов систем напорного гидротранспорта, поведение частиц твердой фазы на его криволинейных участках.
В результате изучения, систематизации и анализа всей имеющейся информации [11, 53] определился следующий путь к достижению поставленных задач: использовать физические процессы, наблюдаемые в напорном гидротранспорте, который широко применяется в современных технологиях обогащения в целях транспортировки минерального сырья, обратив особое внимание на физические процессы, происходящие с пульпой на его криволинейных участках. На криволинейном участке пульпопровода в результате наличия вторичного поперечного течения происходит изменение траектории движения частиц твердой фазы пульпы, которые в зависимости от своей плотности определенным образом перемещаются по боковой поверхности внутреннего радиуса этого участка.
В данной научной работе предлагается авторский способ переработки техногенных отходов теплоэлектростанций путем обогащения минерального компонента и сырья по плотности частиц твердой фазы полезного компонента. Данный способ основан на использовании физических процессов, происходящих при протекании пульпы по криволинейному участку трубопровода [17]. Механизм воздействия потока на частицу твердой фазы при транспортировке пульпы приводит к возникновению одного из трех возможных видов ее движения:
–
скольжение или волочение частицы по нижней стенке пульпопровода;
–
взвешивание в потоке с обратным падением;
–
устойчивое перемещение частицы во взвешенном состоянии.
В данном исследовании внимание уделено первому виду движения частиц твердой фазы, который создает на нижней стенке пульпопровода подвижный слой указанных частиц. Высота подвижного слоя зависит от средней скорости потока, крупности и плотности частиц твердой фазы, а также консистенции потока пульпы. Гранулометрический анализ по граничной крупности находящихся в пульпе частиц твердой фазы позволяет разделить их на две группы. Первая группа частиц твердой фазы в смеси с водой образуют суспензию, способную транспортировать вторую группу более крупных частиц.