Читаем Примени математику полностью

Докажем, что быстрее туристы никак не смогут все трое добраться до селения. Действительно, в сумме три туриста должны пройти утроенное расстояние до селения, причем на велосипедах можно проехать в общей сложности не более чем удвоенное расстояние до селения, так как велосипедов только два. Поэтому суммарное время движения туристов не может быть меньше, чем время проезда на велосипеде удвоенного пути плюс время прохождения пешком однократного пути. Поделив это суммарное время на троих, мы получим как раз то наименьшее время движения каждого туриста, которое будет реализовано при указанной выше организации движения.

14.9. Могут. Движение можно организовать так. Пусть двое туристов отправляются на мотоцикле, а третий турист идет пешком. Через час один турист слезает с мотоцикла и проходит оставшиеся 10 км за два часа пешком (50 км мотоцикл уже проехал за первый час). Другой же турист возвращается на мотоцикле назад и, встретив третьего туриста, подвозит его до конечного пункта. Докажем, что эта последняя операция, связанная с возвращением назад, займет не более двух часов. В самом деле, через час после начала движения расстояние между мотоциклистом и третьим туристом равно 45 км, а расстояние между третьим туристом и конечным пунктом равно 55 км. Даже если третий турист остановится и будет просто ждать мотоциклиста, и то общее расстояние 45 + 55 = 100 км мотоциклист преодолеет за два часа. Тем более это удастся сделать, если третий турист пойдет навстречу мотоциклисту, сократив тем самым суммарный его пробег.

14.10. Пусть длина маршрута равна 80 км и A, В, С, D, Е - последовательные точки маршрута, отстоящие друг от друга на расстояние 20 км, причем А - начальная, а Е - конечная точка маршрута (рис. 46). Так как с трехдневным запасом продовольствия путешественник может пройти только 60 км, то ему придется хотя бы в одной из точек В, С или D устроить склад. Понятно, что первый раз склад может быть устроен только в точке В, поскольку, если его устроить в точке С или D, то путешественнику уже не хватит запаса продовольствия для возвращения назад в точку А за новой его порцией. Оставить в точке В он может только однодневный запас продовольствия, так как на путь от точки А до точки В и обратно путешественник тратит два дня. Если после этого он снова выйдет из точки А с трехдневным запасом продовольствия, то, дойдя до точки В и забрав находящийся там однодневный запас продовольствия, он дойдет до конечной точки Е. Итак, наименьшее количество дней, необходимое путешественнику для прохождения маршрута в 80 км, равно шести.


Рис. 46


Если маршрут имеет длину 100 км, то путешественник сможет пройти его за 15 дней следующим образом. За восемь дней он сделает в первой точке В, отстоящей от начальной точки А на 20 км, склад с четырехдневным запасом продовольствия. Затем путешественник заберет в точке А трехдневный запас и придет в точку В, имея там в общей сложности шестидневный запас продовольствия. Из предыдущего рассуждения в решении настоящей задачи нам известно, то за шесть дней путешественник сможет пройти 80 км. Итак, на весь путь ему понадобится 8 + 1 + 6 = 15 дней (попробуйте доказать, что менее 15 дней ему не хватит).

§ 15. Правильные многоугольники


Правильные многоугольники уже в глубокой древности считались символом красоты и совершенства. Это и понятно: ведь из всех многоугольников с заданным числом сторон наиболее приятен для глаза правильный многоугольник, у которого равны все стороны и равны все углы.

Практическая задача построения таких многоугольников с помощью циркуля и линейки имеет давнюю историю. Евклид в своем труде по геометрии приводит способы построения правильных треугольника, четырехугольника (квадрата), пятиугольника и пятнадцатиугольника, а также всех многоугольников, которые получаются из них удвоением числа сторон (не обязательно однократным). Следовательно, древние греки могли строить правильные многоугольники с числом сторон, равным

3, 4, 5, 6, 8, 10, 12, 15, 16, ... Долгое время математиков особенно занимал вопрос о построении правильного семиугольника. Лишь в 1796 г. К. Ф. Гаусc доказал принципиальную невозможность этого построения с помощью только циркуля и линейки. Более того, им было доказано, что среди правильных многоугольников с нечетным числом сторон построить можно только такие, для которых число сторон является либо простым числом вида 22m + 1, m = 0, 1, 2, ... (которых в настоящее время известно всего пять: 3, 5, 17, 257 и 65 537), либо произведением нескольких таких различных чисел. Таким образом, начатый выше список нельзя дополнить числами 7, 9, 11, 13, 14, а можно лишь продолжить следующим образом:

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика