Читаем Примени математику полностью

16.3. Как и в задаче 16.1, ситуация сильно упрощается, если хотя бы одна из проекций данного отрезка АВ положительна и кратна заданному числу n. В этом случае достаточно найти точки пересечения отрезка с линиями сетки, делящими указанную проекцию на n равных частей. Таким способом можно разделить отрезок АВ, изображенный на рис. 69, как на 5, так и на 7 равных частей. Но вот для деления того же отрезка, скажем, на n = 6 равных частей одних лишь линий сетки не хватает. Для этого можно поступить следующим образом: отложим от точки А в одном направлении на равных расстояниях друг от друга точки А1, А2 ... An-1 (на рис. 69 точки А1, ... An расположены в подряд идущих узлах сетки), а от точки В в противоположном направлении на тех же расстояниях друг от друга точки B1, B2 ... Bn-1 (на рис. 69 это точки B1, ... B5). Соединив прямыми линиями попарно А1 и Вn-1, A2 и Вn-2, ..., An-1 и B1, мы разделим этими прямыми отрезок AВ на n равных частей, поскольку все полуденные прямые параллельны, так как являются сторонами соответствующих параллелограммов) и отстоят друг от друга на равных расстояниях.


Рис. 69


16.4. Пользуясь методами, изложенными в решении задачи 16.1, можно построить середины сторон треугольника АВС, а затем провести его медианы. Точка Е пересечения медиан не обязательно попадает в узел, даже если середины всех трех сторон треугольника являются узлами сетки (рис. 70). Можно доказать, что это попадание произойдет тогда и только тогда, когда сумма горизонтальных, равно как и сумма вертикальных проекций векторов кратна 3.


Рис. 70


16.5. Сосчитаем по клеточкам длину горизонтальной проекции AE и вертикальной проекции EB вектора после этого точку С перенесем по горизонтали в точку F, которую затем перенесем по вертикали в точку D так, чтобы выполнялись равенства (рис.71). Тогда из равенства прямоугольных треугольников ABE и CDF и параллельности их соответствующих катетов следует равенство и параллельность их гипотенуз АВ и CD. Таким образом, имеем требуемое равенство Из построения ясно, что точка D совпадает с узлом сетки.


Рис. 71


Заметим, что точку D можно было построить и по-другому: параллельно перенеся точку В на вектор

16.6. В силу параллельности средних линий треугольника ABC соответствующим его сторонам получаем, что середины D, Е и F сторон АВ, ВС и СА этого треугольника образуют вместе с вершиной А параллелограмм ADEF (рис. 72). Поэтому, если три его вершины A, D и F находятся в узлах сетки, то четвертая вершина, будучи результатом параллельного переноса точки D на вектор также совпадает с узлом сетки (см. задачу 16.5).


Рис. 72


16.7. Пусть данная прямая проходит через узлы А и В, чтобы провести через данный узел С прямую, параллельную прямой АВ, достаточно параллельно перенести точку В на вектор (см. задачу 16.5) и через полученную точку D провести прямую CD.

Для симметричного отражения прямой CD относительно прямой АВ можно затем параллельно перенести точки A и В на вектор и провести через полученные точки G и H прямую. Хотя точки G и Н, вообще говоря, не симметричны точкам С и D относительно прямой АВ, но прямая GH параллельна прямой АВ и отстоит от нее на том же расстоянии, что и прямая CD (рис. 73).


Рис. 73


16.8. Чтобы повернуть точку А вокруг точки В в данном направлении на угол 90°, можно поступить следующим образом: сосчитать по клеточкам длину горизонтальной проекции ВС и вертикальной проекции СА отрезка AB, а затем отложить от точки В по вертикали точку D, а от нее по горизонтали точку L так, чтобы выполнялись равенства BC = BD и CA = DE (рис. 74). Тогда полученная точка Е и будет результатом указанного поворота точки Л, если, конечно, каждый из катетов BD и DE прямоугольного треугольника BDE является результатом поворота вокруг точки В катетов ВС и СА соответственно прямоугольного треугольника ВСА именно в том направлении, в котором требовалось (на рис. 74 - это направление против часовой стрелки). Равенство АВ = ВЕ вытекает из равенства упомянутых прямоугольных треугольников (по двум катетам), а перпендикулярность отрезков АВ и BE является следствием соотношения ∠ ABE = ∠ ABD + ∠ DBE = ∠ DBA + ∠ ABC = ∠DBC = 90°.


Рис. 74


16.9. Повернем одну из двух данных вершин А или В, скажем А, вокруг вершины В на угол 90°, затем вершину В вокруг полученной точки С на угол 90° в том же направлении (рис. 75). Полученная в результате точка D вместе с точкой С и двумя данными вершинами А и В образует вершины квадрата (поскольку четырехугольник ABCD, согласно построению, является параллелограммом с прямым углом при вершине В и равными соседними сторонами АВ и ВС). Попутно мы доказали, что вершины С и D искомого квадрата находятся в узлах сетки, так как они являются; результатом поворота, описанного в решении задачи 16.8.


Рис. 75


Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика