Читаем Принцесса или тигр полностью

А теперь рассмотрим машину, которая подчиняется выведенным Мак-Каллохом правилам 1, 3 и 4. Числом, порождающим обращение самого себя, является, например, число 452452 (оно порождает обращение повторения числа 452, или, другими словами, обращение числа 452452). (Сравните его с предыдущим решением 43243.) Числом, которое порождает повторение обращения самого себя, является число 54525452. (Сравните его с прежним решением 5432543.)

Далее, рассмотрим машину, которая подчиняется правилам 1, 2 и 4. Мы знаем, что число 33233 порождает свой собственный ассоциат точно так же, как и число 352352. Что касается числа X, порождающего повторение самого себя, то у нас уже имеются два решения — это числа 35235 и 552552. Что же касается числа X, порождающего ассоциат повторения самого себя, то одним решением служит число 3532353; другим — число 35523552. Наконец, для числа, которое порождает повторение своего собственного ассоциата, также существуют два решения — это число 5332533 или число 53525352.

Наконец, рассмотрим некоторую произвольную машину, которая подчиняется по меньшей мере двум из правил Мак-Каллоха, а именно: правилам 1 и 4. Для заданного операционного числа М числом А, порождающим М(Х), оказывается число М52М52. (Сравните его с прежним решением — числом М32МЗ, полученным для машины, в которой вместо правила 4 используется правило 2.) Если теперь задано операционное число М и некое число А, то числом X, порождающим M(AX), будет число М52АМ52. (Сравните его с прежним решением — М32АМЗ.) Построенные решения показывают нам, что оба принципа Крейга могут быть получены на основании правил 1 и 4. Впрочем, я сформулировал гораздо более общее утверждение, а именно: для того чтобы получить принципы Крейга, достаточно одного только закона Мак-Каллоха (теорема 2). Это утверждение можно доказать тем же способом, который использовался нами в гл. 10. В самом деле, для любого заданного операционного числа М существует некое число Y, которое порождает MY; отсюда ясно, что число М У порождает М(М У). Поэтому число X порождает М(Х), где Х = МУ. Точно так же для любого числа А, если имеется некоторое число У, порождающее AMY, число МУ порождает М(АМУ) и, следовательно, число X порождает М(АХ) при Х = МУ.

Что же касается теоремы 3, то ее можно доказать так же, как это делалось в предыдущей главе. [Например, если даны операционные числа М и N и если выполняется второй принцип Крейга, то существует некое число X, которое порождает M(N2X). Если теперь мы обозначим число N2X через У, то получим, что число X порождает М(У), а число У порождаетN(X)]

<p>Ключ</p>

Дело, по которому Крейг поехал в Норвегию, заняло у него гораздо меньше времени, чем он предполагал, и ровно через три недели инспектор возвратился домой. Дома его ждала записка от Мак-Каллоха:

Дорогой Крейг!

Если ты случайно вернешься из Норвегии до 12 мая (это пятница), то приходи ко мне в этот день обедать. Фергюссона я уже пригласил.

С приветом

Норман Мак-Каллох

— Вот и отлично! — сказал себе Крейг. — Я вернулся как раз вовремя!

Крейг приехал к Мак-Каллоху минут через пятнадцать после того, как там появился Фергюссон.

— С благополучным возвращением! — приветствовал приятеля Мак-Каллох.

— Пока вас не было, — сразу же сообщил Фергюссон, — Мак-Каллох изобрел новую числовую машину!

— Ну да? — удивился Крейг.

— Я занимался этим не один, — сказал Мак-Каллох, — Фергюссон тоже приложил к ней руку. А вообще-то машина интересная; на этот раз в нее введены следующие четыре правила:

правило MI: для любого числа X число 2X2 порождает X;

правил о МII: если число X порождает число У, то число 6Х порождает число 2 У;

правило MIII: если число X порождает число У, то число 4Х порождает число У (как и в случае предыдущей машины);

правило MIV: если число X порождает число У, то число 5Х порождает число УУ (как и в случае предыдущей машины).

— Эта машина, — продолжал Мак-Каллох, — обладает всеми прекрасными свойствами моей последней машины — она подчиняется двум твоим принципам и, кроме того, закону двойных аналогов Фергюссона.

Крейг довольно долго и внимательно изучал эти правила. Наконец он сказал:

— Что-то мне никак не удается сдвинуться с места. Не могу даже найти число, которое порождает само себя. Есть тут такие числа?

— Есть, — ответил Мак-Каллох, — но с помощью этой машины найти их гораздо труднее, чем в предыдущем случае. Честно говоря, я тоже не смог решить эту задачу. А вот Фергюссон с ней справился. Более того, теперь мы знаем, что такое короткое число, порождающее само себя, состоит из десяти цифр.

Крейг опять глубоко задумался.

— А что, первых двух правил недостаточно для нахождения такого числа? — поинтересовался он наконец.

— Нет, конечно! — ответил Мак-Каллох. — Для получения этого числа нам необходимы все четыре правила.

— Удивительное дело, — пробормотал Крейг и вновь погрузился в глубокое раздумье.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное