Читаем Принцесса или тигр? полностью

б) Рассмотрим теперь некоторую машину, обладающую свойствами 1 и 2. Возьмем произвольное число b; тогда, согласно свойству 2, обязательно найдется число a, такое, что при любом x число М(х, а) будет иметь другую четность по сравнению с числом М(х, b). Но, согласно свойству 1, существует по крайней мере одно х, при котором число М(х, а) имеет ту же самую четность, что и само х, — мы только что доказали это в пункте а. Такое число x должно иметь другую четность по сравнению с числом М(х, a), поскольку оно одинаково по четности с числом М(х, а), а М(х, а) в свою очередь имеет иную четность по сравнению с числом М(х, b).

в) Рассмотрим вновь машину со свойствами 1 и 2. Возьмем произвольное число h; тогда, согласно пункту «б» нашего решения (если положить b равным h), существует по крайней мере одно число х, такое, что число М(х, h) будет отличаться по четности от числа х. Значит, число М(х, h) не может иметь ту же самую четность, что и число x для всех х; другими словами, свойство 3 оказывается невыполнимым. Таким образом, свойства 1, 2 и 3, если воспользоваться словцом Амброза Бирса,[11] «несосуществимы».

Примечание. Невозможность построения машины Уолтона тесно связана с теоремой Тарского (гл. 15). Поэтому для доказательства этой теоремы и для доказательства невозможности существования подобной машины можно использовать одни и те же рассуждения.

<p>19. Мечта Лейбница</p>

Фергюссон (да, по-своему, как и чудаковатый Уолтон) пытался создать нечто такое, что в случае успеха можно было бы считать осуществлением самой страстной мечты Лейбница; ведь Лейбниц серьезно размышлял о возможности создания счетной машины, которая могла бы решить все математические проблемы, а заодно и философские! Однако мечта Лейбница о машине, решающей любые математические задачи (а философские проблемы тем более), оказалась недостижимой. Этот вывод следует из результатов. полученных Гёделем, Россером, Черчем, Клини, Тьюрингом, Постом. К их работам мы сейчас и обратимся.

Существует определенный класс счетных машин. назначение которых состоит в том, чтобы производить, те или иные математические операции над положительными целыми числами. Мы подаем на вход такой машины некое число x и получаем на выходе новое число у. Например, можно легко представить себе машину (не очень, понятно, интересную), которая при подаче на ее вход числа x дает нам на выходе число х + 1. Обычно говорят, что такая машина выполняет операцию прибавления единицы. Можно сделать машину, которая выполняет, скажем, операцию сложения двух чисел. В такой машине мы сначала подаем на вход число х, потом число у, затем нажимаем кнопку и через какое-то время получаем на выходе число х + у. (Для таких машин имеется свое техническое название — их, по-моему, называют суммирующими машинами!)

Существует и другой тип машин, которые можно назвать генерирующими, или перечисляющими, машинами Такие машины будут играть более важную роль в наших последующих рассуждениях (где мы следуем теориям Поста). Эти машины не имеют входов; они запрограммированы на генерирование множества положительных целых чисел. Например, одна машина может генерировать у нас множество четных чисел, другая — генерировать множество нечетных чисел, третья — множество простых чисел, и т. д. При этом типичная машинная программа для генерирования четных чисел может выглядеть так.

Мы задаем машине две команды (1) напечатать число 2; (2) если напечатано число n, то напечатать число n + 2. (Разрешается задавать вспомогательные правила, которые определяют порядок выполнения команд таким способом, чтобы машина в конечном счете выполнила все, что она может выполнить.) Такая машина, подчиняясь команде (1), рано или поздно напечатает число 2, а напечатав 2 она в конце концов, подчиняясь команде (2), напечатает число 4, затем, напечатав 4, она, опять же руководствуясь командой (2), напечатает число 6, потом числа 8, 10 и т. д. Тем самым наша машина будет генерировать множество четных чисел. (Отметим, что без введения дополнительных команд она никогда не сможет произвести нам числа 1, 3, 5 или любое другое нечетное число.) Чтобы запрограммировать машину на генерирование нечетных чисел, нам следует просто заменить первую команду на команду «напечатать число 1». Иногда объединяют вместе две или несколько машин, с тем чтобы информация на выходе одной машины могла быть использована в другой. Пусть, например, у нас имеются две машины, А и В, программу для которых мы составим следующим образом. Машине А мы зададим две команды: (1) напечатать число 1; (2) если машина В напечатала число n, то напечатать число n + 1. Машине В мы задаем только одну команду: (1) если машина А напечатала число n, то напечатать число n + 1. Какие числа будет генерировать машина А, а какие — машина В? Ответ: машина А будет генерировать множество нечетных чисел, а машина В — множество четных чисел.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное